1
|
Hao Y, Jin Y, Zhang A, Jiang X, Gong M, Lu C, Pan R, Chen S. Identification and biochemical characterization of a novel halolysin from Halorubellus sp. PRR65 with a relatively high temperature activity. World J Microbiol Biotechnol 2024; 40:340. [PMID: 39358625 DOI: 10.1007/s11274-024-04149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.
Collapse
Affiliation(s)
- Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Yu Jin
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Cunlong Lu
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| |
Collapse
|
2
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
4
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Sisa A, Sotomayor C, Buitrón L, Gómez-Estaca J, Martínez-Alvarez O, Mosquera M. Evaluation of by-products from agricultural, livestock and fishing industries as nutrient source for the production of proteolytic enzymes. Heliyon 2023; 9:e20735. [PMID: 37867804 PMCID: PMC10585220 DOI: 10.1016/j.heliyon.2023.e20735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
This study presents an approach that utilizes low-value agro-industrial by-products as culture media for producing high-value proteolytic enzymes. The objective was to assess the impact of six agro-industrial by-products as culture media on the production of proteolytic enzymes. Bacillus subtilis strains, confirmed through comprehensive biochemical, morphological, and molecular analyses, were isolated and identified. Enzymatic activity was evaluated using azocasein and casein substrates, and the molecular sizes of the purified extract components were determined. The results demonstrated that the isolated bacteria exhibited higher metabolic and enzymatic activity when cultured in media containing 1 % soybean oil cake or feather meal. Furthermore, higher concentrations of the culture media were found to hinder the production of protease. Optimal protease synthesis on soybean oil cake and feather meal media was achieved after 4 days, using both the azocasein and casein methods. Semi-purification of the enzymatic extract obtained from Bacillus subtilis in feather meal and soybean oil cake resulted in a significant increase in azocaseinolytic and caseinolytic activities. Gel electrophoresis analysis revealed multiple bands in the fractions with the highest enzymatic activity in soybean oil cake, indicating the presence of various enzymes with varying molecular sizes. These findings highlight the potential of utilizing low-value agro-industrial by-products as efficient culture media for the sustainable and economically viable production of proteolytic enzymes with promising applications in various industries.
Collapse
Affiliation(s)
- Alisson Sisa
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Cristina Sotomayor
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Lucía Buitrón
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Mauricio Mosquera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| |
Collapse
|
6
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
A Novel Thermostable Keratinase from Deinococcus geothermalis with Potential Application in Feather Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Keratinase can specifically attack disulfide bridges in keratin to convert them from complex to simplified forms. Keratinase thermal stability has drawn attention to various biotechnological industries. In this study, a keratinase DgeKer was identified from a slightly thermophilic species, D. geothermalis. The in silico analysis showed that DgeKer is composed of signal peptide, N-terminal propeptide, mature domain, and C-terminal extension. DgeKer and its C-terminal extension-truncated enzyme (DgeKer-C) were cloned and expressed in E. coli. The purified DgeKer and DgeKer-C showed maximum activity at 70 °C and pH 9–The thermal stability assay (60 °C) showed that the half-life value of DgeKer and DgeKer-C were 103.45 min and 169.10 min, respectively. DgeKer and DgeKer-C were stable at the range of pH from 9 to 11 and showed good tolerance to some metal ions, surfactants and organic solvent. Furthermore, DgeKer could degrade feathers at 70 °C for 60 min. However, the medium became turbid with obvious softening of barbules after being treated with DgeKer-C, which might be due to C-terminal extension. In summary, a thermostable keratinase DgeKer with high efficiency degradation of feathers may have great potential in industry.
Collapse
|
8
|
Park SA, Bhatia SK, Park HA, Kim SY, Sudheer PDVN, Yang YH, Choi KY. Bacillus subtilis as a robust host for biochemical production utilizing biomass. Crit Rev Biotechnol 2021; 41:827-848. [PMID: 33622141 DOI: 10.1080/07388551.2021.1888069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacillus subtilis is regarded as a suitable host for biochemical production owing to its excellent growth and bioresource utilization characteristics. In addition, the distinct endogenous metabolic pathways and the suitability of the heterologous pathways have made B. subtilis a robust and promising host for producing biochemicals, such as: bioalcohols; bioorganic acids (lactic acids, α-ketoglutaric acid, and γ-aminobutyric acid); biopolymers (poly(γ-glutamic acid, polyhydroxyalkanoates (PHA), and polysaccharides and monosaccharides (N-acetylglucosamine, xylooligosaccharides, and hyaluronic acid)); and bioflocculants. Also for producing oligopeptides and functional peptides, owing to its efficient protein secretion system. Several metabolic and genetic engineering techniques, such as target gene overexpression and inactivation of bypass pathways, have led to the improvement in production titers and product selectivity. In this review article, recent progress in the utilization of robust B. subtilis-based host systems for biomass conversion and biochemical production has been highlighted, and the prospects of such host systems are suggested.
Collapse
Affiliation(s)
- Seo A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Hyun A Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Seo Yeong Kim
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | | | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.,Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
Rathore DS, Singh SP. Kinetics of growth and co-production of amylase and protease in novel marine actinomycete, Streptomyces lopnurensis KaM5. Folia Microbiol (Praha) 2021; 66:303-316. [PMID: 33404954 DOI: 10.1007/s12223-020-00843-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Amylases and proteases are among the industrially most important enzymes for food processing, animal feed, brewing, starch processing, detergents, healthcare, leather processing, and biofuel production. In this study, we investigated the growth kinetics and statistically optimized the co-production of amylase and protease in a phylogenetically novel haloalkaliphilic actinomycete, Streptomyces lopnurensis KaM5 of seawater. The Plackett-Berman design using Minitab 14.0 software was employed to assess the impact of the nutritional factors, temperature, pH, and incubation time. Further, starch, yeast extract, NaCl concentrations, and incubation time were optimized by Box-Behnken design at their three levels. The Pareto charts, contour, surface plots, and individual factorial analysis expressed the variability and levels for the optimal enzyme production. ANOVA analysis admitted the statistical fitness and significance level among the variables. A two-fold increase in enzyme production was achieved by cost-effective co-production media. The study was further extended to growth kinetics associated with enzyme production. Specific growth rate (μ), maximal cell mass (Xmax), volumetric product formation (Pmax), rate of product formation (Qp), and generation time (g) were computed and analyzed. These parameters significantly improved when compared with the pre-optimized conditions, and the production economics of the enzyme was industrially viable. The initial studies on the characteristics of the enzymes suggested its ability to function under the combination of alkaline pH and high salt concentrations. The co-production of enzymes from extremophiles can be a potentially viable option for large-scale production and applications.
Collapse
Affiliation(s)
- Dalip Singh Rathore
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India.
| |
Collapse
|
10
|
Promchai R, Visessanguan W, Luxananil P. An efficient ABC transporter signal peptide directs heterologous protein secretion in food-grade hosts. World J Microbiol Biotechnol 2020; 36:154. [PMID: 32949270 DOI: 10.1007/s11274-020-02932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
An efficient expression-secretion system for heterologous protein production in food-grade hosts, Lactobacillus plantarum and Bacillus subtilis, is still required to broaden their applications. The optimal signal peptide compatible with both the desired protein and the target host is important for the system. Here, we constructed new expression-secretion vectors to be used in both bacteria. A natural plasmid originating from food-grade L. plantarum BCC9546 was used as a core vector combined with a strong constitutive promoter, L-ldh promoter, and various signal peptides from several types of L. plantarum proteins: ABC transporter, cell wall-associated and extracellular proteins. A gene encoding 88-kDa amylase isolated from starch-related L. plantarum TBRC470 was used as a gene model to evaluate the systems. By comparing the amounts of secreted amylase from the recombinant strains to that of wild type, all signal peptides gave higher yields of secreted amylase in recombinant B. subtilis. Interestingly, two ABC transporter signal peptides from glutamine and mannose ABC transporters provided noticeably high levels of secreted amylase in recombinant L. plantarum. Moreover, these signal peptides also gave high yields of secreted amylase in recombinant B. subtilis. From the results, the signal peptide of glutamine ABC transporter, which functions in essential amino acid transportation that is a precursor for synthesis of nitrogen-containing compounds and nitrogen homeostasis, has a potential use in development of an efficient expression-secretion system for heterologous protein production in both food-grade hosts.
Collapse
Affiliation(s)
- Ruangurai Promchai
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Wonnop Visessanguan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Plearnpis Luxananil
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.
| |
Collapse
|