1
|
Kiani BH, Ajmal Q, Akhtar N, Haq IU, Abdel-Maksoud MA, Malik A, Aufy M, Ullah N. Biogenic Synthesis of Zinc Oxide Nanoparticles Using Citrullus colocynthis for Potential Biomedical Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020362. [PMID: 36679076 PMCID: PMC9865101 DOI: 10.3390/plants12020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 05/29/2023]
Abstract
Green nanoparticle synthesis is considered the most efficient and safe nanoparticle synthesis method, both economically and environmentally. The current research was focused on synthesizing zinc oxide nanoparticles (ZnONPs) from fruit and leaf extracts of Citrullus colocynthis. Four solvents (n-hexane, methanol, ethyl acetate, and aqueous) were used to prepare the extracts from both plant parts by maceration and extraction. Zinc acetate was used to synthesize the nanoparticles (NPs), and color change indicated the synthesis of ZnONPs. X-ray diffraction, UV spectroscopy, and scanning electron microscopy were used to study the ZnONPs. UV-visible spectroscopy revealed an absorbance peak in the 350-400 nm range. XRD patterns revealed the face-centered cubic structure of the ZnONPs. SEM confirmed a spherical morphology and a size range between 64 and 82 nm. Phytochemical assays confirmed that the complete flavonoid, phenolic, and alkaloid concentrations were higher in unrefined solvent extracts than in nanoparticles. Nanoparticles of C. colocynthis fruit aqueous extracts showed stronger antioxidant activity compared with the crude extracts. Strong antifungal activity was exhibited by the leaves, crude extracts, and nanoparticles of the n-hexane solvent. In a protein kinase inhibition assay, the maximum bald zone was revealed by nanoparticles of ethyl acetate extracts from leaves. The crude extracts and nanoparticles of leaves showed high cytotoxic activities of the n-hexane solvent, with LC50 values of 42.08 and 46.35, respectively. Potential antidiabetic activity was shown by the n-hexane (93.42%) and aqueous (82.54%) nanoparticles of the fruit. The bioactivity of the plant showed that it is a good candidate for therapeutic use. The biosynthesized ZnONPs showed promising antimicrobial, cytotoxic, antidiabetic, and antioxidant properties. Additionally, the in vivo assessment of a nano-directed drug delivery system for future therapeutic use can be conducted based on this study.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Qudsia Ajmal
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11149, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1010 Vienna, Austria
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
3
|
Mirzaei SZ, Lashgarian HE, Karkhane M, Shahzamani K, Alhameedawi AK, Marzban A. Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. BIORESOUR BIOPROCESS 2021; 8:56. [PMID: 38650241 PMCID: PMC10992851 DOI: 10.1186/s40643-021-00412-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
For the first time, an aqueous extract of Melilotus officinalis was used to synthesize bimetallic silver selenide chalcogenide nanostructures (Ag2Se-NCs). The formation of NCs was confirmed and characterized by UV-visible and FTIR spectroscopy, SEM and TEM imaging, XRD and EDX crystallography, zeta potential (ZP) and size distribution (DLS). The bioactivities of biosynthesized Ag2Se-NCs, such as antibacterial, antibiofilm, antioxidant and cytotoxicity potentials, were then examined. Bio-based Ag2Se-NCs were successfully synthesized with mostly spherical shape in the size range of 20-40 nm. Additionally, the MIC and MBC values of Ag2Se-NCs against β-lactam-resistant Pseudomonas aeruginosa (ATCC 27853) were 3.12 and 50 µg/ml, respectively. The DPPH scavenging potential of Ag2Se-NCs in terms of IC50 was estimated to be 58.52. Green-synthesized Ag2Se-NCs have been shown to have promising benefits and could be used for biomedical applications. Although the findings indicate promising bioactivity of Ag2Se-NCs synthesized by M. officinalis extract (MO), more studies are required to clarify the comprehensive mechanistic biological activities.
Collapse
Affiliation(s)
- Seyedeh Zahra Mirzaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, P.O. Box: 6816889468, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Biotechnology Department, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Karkhane
- Biotechnology Department, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, P.O. Box: 6816889468, Khorramabad, Iran.
| |
Collapse
|
4
|
Murali M, Anandan S, Ansari MA, Alzohairy MA, Alomary MN, Asiri SMM, Almatroudi A, Thriveni MC, Singh SB, Gowtham HG, Aiyaz M, Srinivasa C, Urooj A, Amruthesh KN. Genotoxic and Cytotoxic Properties of Zinc Oxide Nanoparticles Phyto-Fabricated from the Obscure Morning Glory Plant Ipomoea obscura (L.) Ker Gawl. Molecules 2021; 26:891. [PMID: 33567661 PMCID: PMC7915295 DOI: 10.3390/molecules26040891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023] Open
Abstract
The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India;
| | - Satish Anandan
- Department of Studies in Food Science and Nutrition, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (S.A.); (A.U.)
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563101, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Sudarshana Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (S.B.S.); (H.G.G.); (M.A.)
| | | | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (S.B.S.); (H.G.G.); (M.A.)
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Davangere 577007, Karnataka, India;
| | - Asna Urooj
- Department of Studies in Food Science and Nutrition, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (S.A.); (A.U.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India;
| |
Collapse
|
5
|
Kavya J, Murali M, Manjula S, Basavaraj G, Prathibha M, Jayaramu S, Amruthesh K. Genotoxic and antibacterial nature of biofabricated zinc oxide nanoparticles from Sida rhombifolia linn. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Chandra H, Kumari P, Bontempi E, Yadav S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101518] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron 2019; 141:111417. [PMID: 31202187 DOI: 10.1016/j.bios.2019.111417] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
Fascinating properties of ZnO nanostructures have created much interest due to their importance in health care and environmental monitoring. Current worldwide production and their wide range of applications signify ZnO to be a representative of multi-functional oxide material. Recent nanotechnological developments have stimulated the production of various forms of ZnO nanostructures such as nano-layers, nanoparticles, nanowires, etc. Due to their enhanced sensing properties, improved binding ability with biomolecules as well as biological activities have enabled them as suitable candidates for the fabrication of biosensor devices in the biomedical arena. In this review, the synthesis of ZnO nanostructures, mechanism of their interaction with biomolecules and their applications as sensors in health care area are discussed considering the biosensors for molecules with small molecular weight, infectious diseases, and pharmaceutical compounds.
Collapse
Affiliation(s)
- Nagaraj P Shetti
- Electrochemistry and Materials Group, Department of Chemistry, K. L. E. Institute of Technology, Affiliated to Visvesvaraya Technological University, Gokul, Hubballi, 580030, Karnataka, India.
| | - Shikandar D Bukkitgar
- Electrochemistry and Materials Group, Department of Chemistry, K. L. E. Institute of Technology, Affiliated to Visvesvaraya Technological University, Gokul, Hubballi, 580030, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Tejraj M Aminabhavi
- Department of Pharmaceuticals, Soniya College of Pharmacy, Dharwad, 580 002, Karnataka, India
| |
Collapse
|