1
|
Andrade A, Mehl A, Mach E, Couto P, Mansur CRE. Application of biosurfactants in enhanced oil recovery ex-situ: a review. Braz J Microbiol 2024; 55:3117-3139. [PMID: 39356408 PMCID: PMC11711844 DOI: 10.1007/s42770-024-01515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
With a growing focus on environmentally friendly solutions, biosurfactants derived from plants or microorganisms have gained attention for Enhanced Oil Recovery (EOR) applications. Biosurfactants offer several advantages over existing options, including biodegradability, low toxicity, availability of raw materials, resistance to harsh reservoir conditions, and improved water/oil interfacial tension reduction. Different organisms, such as bacteria, fungi, and plants, can produce these natural surfactants. Bacillus sp. and Pseudomonas sp. bacteria are extensively studied for their ability to produce biosurfactants using low-cost carbon and nitrogen sources, exhibiting excellent surface activity and low critical micellar concentration (CMC). Fungi, though less commonly used, can also produce biosurfactants, albeit with lower interfacial activity. Plant-derived natural surfactants find wide application in laboratory tests for EOR, despite having higher CMC. This review not only summarizes the current knowledge on biosurfactants but also offers a novel comparative analysis of those produced by bacteria, fungi, and plants, examining their CMC, surface tension, and interfacial tension properties. Additionally, it quantifies the number of publications on the use of biosurfactants for Microbial Enhanced Oil Recovery ex-situ (MEOR ex-situ) over the past 30 years and compares these with biosurfactants derived from plant sources. Our study is unique in its comparative approach and the quantification of literature on MEOR ex-situ. The findings reveal that biosurfactants produced by bacteria generally exhibit superior surface activity, even at lower concentrations, compared to those produced by plants or fungi. This new comparative perspective and thorough literature analysis highlight the distinctive contributions of this study. Overall, the use of biosurfactants for EOR represents a promising approach to cleaner energy production, with the potential to reduce environmental impact while improving oil recovery.
Collapse
Affiliation(s)
- Anny Andrade
- School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana Mehl
- School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Mach
- School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Couto
- Federal University of Rio de Janeiro, COPPE/UFRJ, Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Lenchi N, Ahmedi WNEH, Llirós M. Simultaneous removal of crude oil and heavy metals by highly adapted bacterial strain Cutibacterium sp. NL2 isolated from Algerian oilfield. Int Microbiol 2024; 27:615-630. [PMID: 37582845 DOI: 10.1007/s10123-023-00419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Investigating the ability of bacteria to simultaneously enhance hydrocarbon removal and reduce heavy metals' toxicity is necessary to design more effective bioremediation strategies. A bacterium (NL2 strain) isolated from an Algerian oilfield was cultivated on crude oil as sole carbon and energy sources. Molecular analyses of the 16S rRNA gene sequence placed the strain within the Cutibacterium genera. This isolate was able to tolerate up to 60% of crude oil as sole carbon source. Chemical analyses (GC-MS) evidenced that strain NL2 was able to degrade 92.22% of crude oil (at optimal growing conditions: pH 10, 44 °C, 50 g L-1 NaCl, and 20% of crude oil (v/v) as sole carbon source) in only 7 days. NL2 isolate was also able to produce biosurfactants with reduction of surface tension of growing media (29.4 mN m-1). On the other hand, NL2 strain was able to tolerate high lead (Pb) and copper (Cu) concentrations (up to 60 mM). In fact, NL2 cultivated in the presence of 20% of crude oil, and 0.48 mM of Pb was able to reduce Pb concentration by a 41.36%. In turn, when cultivated on high Pb concentration (15 mM), the strain was able to remove 35.19% of it and 86.25% of crude oil, both in a time frame of 7 days. Our findings suggest that Cutibacterium strain NL2 is able to efficiently use and remove a wide range of crude oil substrates in presence of high Pb concentration. Accordingly, NL2 strain is of extreme interest from a biotechnological standpoint.
Collapse
Affiliation(s)
- Nesrine Lenchi
- Department of Natural and Life Sciences, Faculty of Sciences, University Algiers 1 BenYoucef Benkhedda, Algiers, Algeria.
- Bioinformatics, Applied Microbiology and Biomolecules Laboratory, Faculty of Sciences, University of M'Hamed Bougara of Boumerdès, Boumerdes, Algeria.
| | - Wissam Nour El Houda Ahmedi
- Department of Natural and Life Sciences, Faculty of Sciences, University Algiers 1 BenYoucef Benkhedda, Algiers, Algeria
| | - Marc Llirós
- Bioinformatics and Bioimaging (BI-SQUARED) Research Group, Faculty of Sciences, Technology and Engineering, Universitat de Vic - Universitat Central de Catalunya, Vic, Catalunya, Spain
| |
Collapse
|
3
|
A comparative study on chemical characterization and properties of surface active compounds from Gram-positive Bacillus and Gram-negative Ochrobactrum strains utilizing pure hydrocarbons and waste mineral lubricating oils. World J Microbiol Biotechnol 2022; 38:141. [PMID: 35710855 DOI: 10.1007/s11274-022-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.
Collapse
|
4
|
Ossai IC, Hamid FS, Hassan A. Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
|
6
|
Khanpour-Alikelayeh E, Partovinia A, Talebi A, Kermanian H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:328. [PMID: 33956244 DOI: 10.1007/s10661-021-09104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5-15% v/v), initial oil concentration (1500-3500 ppm), and NaCl concentration (0-30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box-Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables' effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.
Collapse
Affiliation(s)
- Elham Khanpour-Alikelayeh
- Department of Environment, College of Environment, Karaj, Iran
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Ali Partovinia
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| | - Ahmad Talebi
- Department of Environment, College of Environment, Karaj, Iran
| | - Hossein Kermanian
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Sharma B, Shukla P. Designing synthetic microbial communities for effectual bioremediation: A review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1813727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| |
Collapse
|
8
|
Leoncio L, de Almeida M, Silva M, Oliveira OMC, Moreira ÍTA, Lima DF. Evaluation of accelerated biodegradation of oil-SPM aggregates (OSAs). MARINE POLLUTION BULLETIN 2020; 152:110893. [PMID: 32479280 DOI: 10.1016/j.marpolbul.2020.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 06/11/2023]
Abstract
The studies of the formation of oil-Suspended Particulate Matter (SPM) aggregates (OSAs) have advanced significantly in the scientific community, however there is a need to accelerate oil biodegradation that was dispersed by the formation of OSAs. The present research presents a pioneering character regarding the addition of nutrients as biostimulus for autochthonous hydrocarboclastic bacteria in the biodegradation of Total Petroleum Hydrocarbons (TPH) dispersed by the formation of OSAs. Water aliquots were taken over 60 days from eight bioreactors to perform ionic species analysis, pH, salinity and temperature monitoring, liquid/liquid extraction, serial dilution methodology and filter membrane. TPH quantification was performed on the gas chromatograph with a flame ionisation detector (GC-FID). The addition of nutrients contributed positively to the rate and extent of biodegradation of TPH in association with field-collected SPM. The best result found was with the lowest nutrient concentration (Bio 1) with an average of 98.65% of TPH reduction.
Collapse
Affiliation(s)
- Lua Leoncio
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil.
| | - Marcos de Almeida
- Federal University of Pernambuco, Av. da Arquitetura, s.n., 50740-540 Recife, PE, Brazil
| | - Marcio Silva
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil
| | - Olívia M C Oliveira
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil.
| | - Ícaro T A Moreira
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia, R. Prof. Aristídes Novis, s.n., 40210-630 Salvador, BA, Brazil
| | - Danúsia Ferreira Lima
- LEPETRO, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil
| |
Collapse
|
9
|
Sharma S, Verma R, Pandey LM. Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101322] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|