1
|
Suhaimi S, Jaafar NR, Jailani N, Ngadi N, Rahman RA, Illias RM. Enhanced Tetracycline Degradation by Laccase Immobilized on Carboxymethyl Starch Magnetic Nanoparticles: Optimization of Degradation Conditions, Reusability, and Degradation Pathways. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05238-9. [PMID: 40397296 DOI: 10.1007/s12010-025-05238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Bioremediation using laccase (Lac) to degrade tetracycline (TC) contaminant is promising due to high specificity and selectivity of the biocatalyst. However, degradation parameters should be carefully studied to achieve maximum degradation efficiency. Thus, the current study aimed to degrade TC by employing Lac immobilized on novel carboxymethyl starch magnetic nanoparticles (CMS-MNP). The maximum TC degradation was determined via one-factor-at-a-time (OFAT) and central composite design (CCD). Using OFAT, the maximum TC degradation (56.3%) was achieved at initial TC concentration of 20 mg/mL, pH 6, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) concentration of 1.2 mM, and 10 h of reaction time. When CCD was employed, the TC degradation increased by one-fold with the highest TC degradation (62.1%) recorded at initial TC concentration of 25 mg/L, pH 5.7, ABTS concentration of 1.0 mM, and 11.8 h of reaction time. The CMS-MNP-Lac was reused for 7 cycles with a total TC degradation of 73 mg/L. The TC degradation in this study demonstrated outstanding potential and provided a green alternative for the treatment of TC contaminants in the environment.
Collapse
Affiliation(s)
- Suhaily Suhaimi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Nashriq Jailani
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, 81310, Malaysia.
| |
Collapse
|
2
|
Rai A, Saha SP, Sarkar P, Nath R, Hui M, Sarkar P, Gazmer S, Bhattacharjee A. Bioprospecting amylase from Samiti Lake, situated in the eastern Himalayas. Int J Biol Macromol 2025; 307:137353. [PMID: 39515722 DOI: 10.1016/j.ijbiomac.2024.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Enzymes, especially amylases, have been an economic boon to the industrial sector, their bioprospective and biotechnological use is an added advantage. Our primary focus of the study was to isolate the most potent amylase producer and to optimize its production parameters through One Factor At A Time (OFAT), Central Composite Rotatable Design Response Surface Methodology (CCRD RSM) and Artificial Neural Network (ANN). Based on the qualitative and quantitative analysis, SLAB1 was selected as the most potent amylase producer out of the potential isolates. Further SLAB1 was identified as Priestia flexa via 16SrRNA identification. Optimization of the production parameters showed the best carbon, nitrogen sources, temperature and pH to be fructose, peptone, 20 °C and pH 8.0 respectively. Further, the enzyme was purified using ammonium sulphate precipitation followed by dialysis. Later, DEAE Sepharose (Sigma) resin was used for ion exchange chromatography and the protein was eluted using NaCl gradients from 0.1 M - 0.6 M. Enzyme kinetics assessment of the purified amylase with the Lineweaver Burk plot showed values of maximum rate; Vmax (10.869 μmoL/min), and Michaelis-Menten constant Km to be around (14.91 mg/ml). To determine its potential application, analysis of this purified amylase in cleaning the tomato and chocolate stained cotton fabrics after comparing its compatibility with different detergents were executed. Further analysis of the washed stained fabrics via Scanning Electron Microscopy was carried out.
Collapse
Affiliation(s)
- Aditi Rai
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Pratima Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Madhushree Hui
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Payel Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Smriti Gazmer
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India.
| |
Collapse
|
3
|
Abdella MAA, Ibrahim GE. Application of statistical designs strategy to improve cellulase production using agro-waste residue by a novel isolate Bacillus licheniformis strain-MA1 and assessing the enzyme effect on apple juice quality. BMC Microbiol 2024; 24:511. [PMID: 39614160 PMCID: PMC11605881 DOI: 10.1186/s12866-024-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Cellulose is the major part of lignocellulosic biomass. It can be hydrolyzed into glucose units via specific enzymes called cellulases that have been applied in many commercial fields. There are several studies illustrate the influence of enzymes on apple juice clarification. However, to the best of our knowledge, the effect of microbial cellulase on volatile compounds of apple juice is not well known. The present study aimed to assess the effect of cellulase from a new bacterial isolate on the physicochemical properties of apple juice as well as volatile compounds. The hydrolysis of some polysaccharides (cellulose, hemicellulose, pectin) and polyphenols during apple juice production is necessary to reduce cloud sedimentation or color deterioration and increase the yield of juice. So, enzymes from new microbial isolates serve as processing aids to obtain clear juice with a high yield. RESULTS Cellulase-producing bacterium was isolated, characterized and molecularly identified as Bacillus licheniformis strain-MA1 with an accession number of ON840115. Optimization of medium parameters was implemented using Plackett-Burman design (PBd) followed by Box-Behnken design (BBd) of response surface methodology (RSM). The PBd revealed the three most important (significant) variables including carboxymethyl cellulose (CMC), corn cob, and peptone that had positive impact on cellulase production. Additionally, using the agricultural residue (corn cob) by the bacterial strain as a carbon source helps in reducing the costs of enzyme production, recycling the by-products, and preserving the environment. The optimized medium using PBd and BBd enhanced cellulase production from B. licheniformis strain-MA1 by 6.8-fold. A remarkable increase was observed in juice yield in enzyme treated-juice sample (88.2 ± 0.15%) in comparison with control juice (75.4 ± 0.09%). The total phenolic contents in cloudy and clarified apple juices were 0.957 ± 0.09 and 0.412 ± 0.03 mg/mL, respectively. Also, DPPH and FRAP assays showed a remarkable increase in antioxidant activity (Low IC50) in the control sample compared to enzyme treatment. Twenty-seven volatile compounds were extracted using headspace solid-phase microextraction-gas and analysis was performed by GC-MS. The identified volatile constituents belonged to several chemical classes: 15 esters; 6 alcohols; 4 aldehydes and 2 acids. The predominant class in apple juice volatile fraction was esters with a sweet and fruity odor. CONCLUSION The crude cellulase obtained from the novel bacterial isolate B. licheniformis strain-MA1 was successfully applied as a clarifying agent in apple juice.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Dokki, 12622, Egypt.
| | - Gamil E Ibrahim
- Chemistry of Flavour and Aroma Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Dokki, 12622, Egypt
| |
Collapse
|
4
|
Zhao L, Kang C, Zhang S, Cui L, Xu S, Wang Y, Zhang Y, Gu S. Bacillus cereus CGMCC 1.60196: a promising bacterial inoculant isolated from biological soil crusts for maize growth enhancement. Front Microbiol 2024; 15:1461949. [PMID: 39314878 PMCID: PMC11416921 DOI: 10.3389/fmicb.2024.1461949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soil microbial inoculants are widely recognized as an environmentally friendly strategy for promoting crop growth and increasing productivity. However, research on utilizing the microbial resources from desert biological soil crusts to enhance crop growth remains relatively unexplored. In the present work, a bacterial strain designated AC1-8 with high levels of amylase, protease, and cellulase activity was isolated from cyanobacterial crusts of the Tengger Desert and identified as Bacillus cereus (CGMCC 1.60196). The refinement of the fermentation parameters of B. cereus CGMCC 1.60196 determined that the most effective medium for biomass production was composed of 5 g/L glucose, 22 g/L yeast extract and 15 g/L MgSO4, and the optimal culture conditions were pH 6.0, temperature 37°C, inoculation quantity 3% and agitation speed 240 rpm. Furthermore, the utilization of B. cereus CGMCC 1.60196 has resulted in substantial improvements in various growth parameters of maize seedlings, including shoot length, shoot fresh and dry weights, root fresh and dry weights, and the contents of chlorophyll a, chlorophyll b, and total chlorophyll. The most pronounced growth promotion was observed at an application concentration of 1 × 109 CFU/m2. These results suggest that the novel B. cereus strain, isolated from cyanobacterial crusts, can be regarded as an exemplary biological agent for soil improvement, capable of enhancing soil conditions, promoting crop cultivation and supporting food production.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Chenrui Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shipeng Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Linlin Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shuaihua Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yudong Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yue Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
5
|
Abdella MAA, Ahmed NE, Hasanin MS. Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics. Microb Cell Fact 2024; 23:109. [PMID: 38609920 PMCID: PMC11015618 DOI: 10.1186/s12934-024-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Nehad E Ahmed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Ben Hadj Hmida B, Ben Mabrouk S, Fendri A, Hmida-Sayari A, Sayari A. Optimization of newly isolated Bacillus cereus α-amylase production using orange peels and crab shells and application in wastewater treatment. 3 Biotech 2024; 14:119. [PMID: 38524238 PMCID: PMC10959860 DOI: 10.1007/s13205-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
A newly isolated amylolytic strain was identified as Bacillus cereus spH1 based on 16S and 16-23S gene sequencing (Accession numbers OP811441.1 and OP819558, respectively), optimization strategies, using one variable at time (OVAT) and Plackett-Burman design, were employed to improve the alpha-amylase (α-amylase) production. Condition inferred revealed that the optimal physical parameters for maximum enzyme production were 30 °C, pH 7.5, and 12 h of incubation, using tryptone, malt extract, orange (Citrus sinensis) peels, crab (Portunus segnis) shells, calcium, and sodium chloride (NaCl) as culture medium. The full factorial design (FFD) model was observed to possess a predicted R2 and adjusted R2 values of 0.9788 and 0.9862, respectively, and it can effectively predict the response variables (p = 0). Following such efforts, α-amylase activity was increased 141.6-folds, ranging from 0.06 to 8.5 U/mL. The ideal temperature and pH for the crude enzyme activity were 65 °C and 7.5, respectively. The enzyme exhibited significant stability, with residual activity over 90% at 55 °C. The maltose was the only product generated during the starch hydrolysis. Moreover, the Bacillus cereus spH1 strain and its α-amylase were used in the treatment of effluents from the pasta industry. Germination index percentages of 143% and 139% were achieved when using the treated effluent with α-amylase and the strain, respectively. This work proposes the valorization of agro-industrial residues to improve enzyme production and to develop a green and sustainable approach that holds great promise for environmental and economic challenges.
Collapse
Affiliation(s)
- Bouthaina Ben Hadj Hmida
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d’Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), University of Sfax, Route Sidi Mansour, 3018 Sfax, Tunisia
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
- Department of Biological Sciences, College of Science, University of Jeddah, 23890 Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Abdella MAA, Hassan ME. Covalent immobilization of β-galactosidase using a novel carrier alginate/tea waste: statistical optimization of beads modification and reusability. Bioprocess Biosyst Eng 2024; 47:249-261. [PMID: 38197955 PMCID: PMC10866805 DOI: 10.1007/s00449-023-02959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
β-galactosidase has been immobilized onto novel alginate/tea waste gel beads (Alg/TW) via covalent binding. Alg/TW beads were subjected to chemical modification through amination with polyethyleneimine (PEI) followed by activation with glutaraldehyde (GA). Chemical modification parameters including PEI concentration, PEI pH, and GA concentration were statistically optimized using Response Surface methodology (RSM) based on Box-Behnken Design (BBD). Analysis of variance (ANOVA) results confirmed the great significance of the model that had F value of 37.26 and P value < 0.05. Furthermore, the R2 value (0.9882), Adjusted R2 value (0.9617), and predicted R2 value (0.8130) referred to the high correlation between predicted and experimental values, demonstrating the fitness of the model. In addition, the coefficient of variation (CV) value was 2.90 that pointed to the accuracy of the experiments. The highest immobilization yield (IY) of β-galactosidase (75.1%) was given under optimized conditions of PEI concentration (4%), PEI pH (9.5), and GA concentration (2.5%). Alg/TW beads were characterized by FT-IR, TGA, and SEM techniques at each step of immobilization process. Moreover, the immobilized β-galactosidase revealed a very good reusability as it could be reused for 15 and 20 consecutive cycles keeping 99.7 and 72.1% of its initial activity, respectively. In conclusion, the environmental waste (tea waste) can be used in modern technological industries such as the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
- Centre of Excellence, Encapsulation and Nanobiotechnology Group, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
8
|
Muniasamy R, Rathnasaamy S. Sustainable production and preparative purification of thermostable alkaline α-amylase by Bacillus simplex (ON754233) employing natural deep eutectic solvent-based extractive fermentation. Sci Rep 2024; 14:481. [PMID: 38177253 PMCID: PMC10766970 DOI: 10.1038/s41598-024-51168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
Using PEG-based deep eutectic solvents (PDES), the current study proposes extractive fermentation as a sustainable process integration for the production and purification of α-amylase from Bacillus simplex (ON754233). Glucose: PEG 400 outperformed five PDES in terms of tie lie length (58) and slope value (1.23) against sodium sulphatt. Apple cider pomace was used as a low-cost, sustainable carbon source to produce-amylase, with a maximum enzyme production of 2200.13 U/mL. PDES concentration (20% w/v), salt (12.75 w/v), and apple waste (2.75 g/mL) were all optimized using response surface methodology. When scaled upto 3 L benchtop bioreactor, extractive fermentation was proved to be better technology with maximum recovery of 92.4% with highest partition coefficient (3.59). The partially purified enzyme was further purified using a Sephadex G 100 followed by DEAE-Sephadex anion exchange chromatography with a purity fold of 33. The enzyme was found to be thermostable at the temperature (60 °C), remains alkaline (pH 8), and the activity was stimulated in the presence of Mg2+ ions. With SDS PAGE electrophoresis, the molecular weight was found to be around 140 kDa. Finally, the enzyme kinetics parameters were evaluated with observed Km (0.00396 mM) and Vmax (37.87 U/mL). Thus scaling up extractive fermentation entails increasing production capacity with improved extraction efficiency using green solvents.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India
| | - Senthilkumar Rathnasaamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
9
|
Gupta N, Paul JS, Jadhav SK. Biovalorizing agro-waste 'de-oiled rice bran' for thermostable, alkalophilic and detergent stable α-amylase production with its application as laundry detergent additive and textile desizer. Int J Biol Macromol 2024; 256:128470. [PMID: 38040160 DOI: 10.1016/j.ijbiomac.2023.128470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The current research was concerned with the use of abundant agro-waste 'de-oiled rice bran (DORB)' as a sustainable substrate to produce α-amylase followed by several targets like process parameter optimization for augmented production and immobilization. In addition, we have also focused on investigating the application of DORB_amy as an efficient laundry detergent additive and textile desizer. The best production was recorded at pH 8.0 at 37 °C after 96 h incubation with 1.5 % (w/v) maltose. The DORB_amy has optimum activity at pH 9.0 at 60 °C with a Km and Vmax of 0.31 mg/mL and 222.22 mg/mL/min respectively. The catalytic performance of DORB_amy was further enhanced after immobilization in 3.0 % calcium alginate beads with 61.95 ± 0.17 % of operational stability after five continuous reaction cycles. The findings showed excellent performance of DORB_amy in cleaning starchy stains. The washing performance of enzyme and detergent together was better than their individual performance which increases the application of α-amylase as a laundry detergent additive. About 17.34 % weight loss or desizing was done by DORB_amy with an 8-9 TEGEWA rating. The reported biochemical features like thermostability, alkalophilic and detergent-stable nature of the DORB_amy make it industrially fit with great significance.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India.
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| |
Collapse
|
10
|
Dobariya A, Mankad GP, Ramavat H, Singh SP. Efficacy of the Fruit and Vegetable Peels as Substrates for the Growth and Production of α-Amylases in Marine Actinobacteria. Appl Biochem Biotechnol 2023; 195:7603-7623. [PMID: 37067678 DOI: 10.1007/s12010-023-04422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/18/2023]
Abstract
Enzymes from haloalkaliphilic microorganisms have recently focused attention on their potential and suitability in various applications. In this study, the growth and production of extracellular amylases in the marine actinomycetes, using kitchen waste as the raw starch source, have been investigated. Actinobacteria were isolated from the seawater of the Kachhighadi Coast near Dwarika, Gujarat. Seven Actinobacterial isolates of pre-monsoon, monsoon, and post-monsoon seasons belonging to different strains of Nocardiopsis genera were screened and selected for amylase production. The amylase production was initially assessed on the solid media supplemented with the extracts of different fruits and vegetable peels as a substrate by agar plate assay. The strains Kh-2(13), Kh-2(1), and Kh-3(12) produced maximum amylase with potato peel as a substrate, while no significant differences were found with the media containing other peels. Nevertheless, all strains produced amylases at a significant level with other raw substrates as well. For the optimization of the growth and enzyme production, the selected two isolates Kh-2(13) and Kh-3(12) of the monsoon and winter seasons were cultivated in a liquid medium under the submerged fermentation conditions, with potato peel as a substrate. In both organisms, the optimum amylase production was observed in the stationary phase of growth. For amylase production, the effect of different physical and chemical parameters was evaluated. The optimum growth and amylase production was achieved in 2% inoculum size, at pH 8.0, 28℃, and 5% salt concentration. On the basis of the amylase production index (API) (a ratio of the amylase units and cell growth), both isolates produced significant amylase with the only extract of potato peels, without any other supplements. The trends further indicated that while additional complex sources, such as yeast extract and peptone can enhance the cell growth of the actinobacteria, the amylase production remained unaltered. The study projects the significance of waste raw materials for the production of enzymes in extremophilic microorganisms.
Collapse
Affiliation(s)
- Ankita Dobariya
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Gira P Mankad
- M.V.M. Sci and H. Sci. College Rajkot, Rajkot, 360001, India
| | - Hasti Ramavat
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360005, India.
| |
Collapse
|
11
|
Abd-Elhalim BT, Gamal RF, El-Sayed SM, Abu-Hussien SH. Optimizing alpha-amylase from Bacillus amyloliquefaciens on bread waste for effective industrial wastewater treatment and textile desizing through response surface methodology. Sci Rep 2023; 13:19216. [PMID: 37932353 PMCID: PMC10628158 DOI: 10.1038/s41598-023-46384-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Food waste is a major issue, with one-third of food wasted yearly. This study aimed to produce sustainably the industrial enzyme alpha-amylase using discarded bread waste. Brown (BBW) and white bread waste (WBW) were tested as growth substrates using solid-state and submerged fermentation. The biosynthesized α- amylase is applied to treat starch-heavy industrial wastewater and for textile desizing. Bacillus amyloliquificiens showed the highest starch hydrolysis and enzyme activity on solid and liquid media. α-amylase production by B. amyloliquificiens was optimized via a one-factor-at-a-time evaluation of production parameters. Optimal production occurred by submerged fermentation of BBW inoculated with 2% B. amyloliquificiens at 37 °C and 200rpm for 24 h, reaching 695.2 U/mL α- amylase. The crude enzyme was immobilized on calcium alginate beads with 96.6% efficiency and kept 88.5% activity after 20 reuses, enhancing stability. A Box-Behnken design (BOX) assessed variable interactions. Response surface methodology (RSM) generated a quadratic model and analysis of variance (ANOVA analysis) fitting experimental starch hydrolysis data. Optimal conditions were pH 9, 45 °C, 70% starch, and 27.5 U/mL enzyme incubated for 15 min of contact time, with a high R2 of 0.83. ANOVA confirmed the enzyme's alkaliphilic and thermophilic nature. Using enzyme concentrations ranging from 10.9 to 695.1 U/mL, the enzyme desized textiles in 15 min at pH 9.0 and 45 °C with 96.3% efficiency. Overall, the optimized α- amylase from bread waste has industrial potential for sustainable starch processing.
Collapse
Affiliation(s)
- Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| | - Rawia F Gamal
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt
| | - Samah H Abu-Hussien
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.
| |
Collapse
|
12
|
Abo-Kamer AM, Abd-El-Salam IS, Mostafa FA, Mustafa AERA, Al-Madboly LA. A promising microbial α-amylase production, and purification from Bacillus cereus and its assessment as antibiofilm agent against Pseudomonas aeruginosa pathogen. Microb Cell Fact 2023; 22:141. [PMID: 37528448 PMCID: PMC10391895 DOI: 10.1186/s12934-023-02139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND AND AIM The purpose of the current study is to isolate a heavily amylase-producing bacteria of the genus Bacillus from soil samples, optimize the production of the enzyme, purify it, and evaluate its activity against biofilm-producing bacteria. A total of 12 soil samples were collected and screened for promising Bacillus species with good amylolytic activity. Isolation was done by serial dilution and plating technique and amylolytic activity was determined by starch agar plate method. Among the 12 Bacillus isolates recovered from soil samples, 7 showed positive α-amylase production. The best isolate that recorded the greatest amylolytic activity was selected for further studies. This isolate was identified by 16S rRNA sequencing as Bacillus cereus and registered under gene bank accession number OP811897. Furthermore, the α-amylase enzyme was produced by a submerged fermentation technique using best production media and partially purified by ammonium sulfate and chilled ethanol and molecular weight had been determined by SDS-PAGE gel electrophoresis. The production of α-amylase was optimized experimentally by one-factor at a time protocol and statistically by Plackett-Burman design as well as RSM CCD design. Data obtained from OFAT and CCD revealed that α-amylase activities were 1.5- and twofold respectively higher as compared to un-optimized conditions. The most significant factors had been identified and optimized by CCD design. RESULTS Among the eleven independent variables tested by PBD, glucose, peptone, (NH4)2SO4, and Mg SO4 were the most significant parameters for α-amylase production with an actual yield of 250U/ml. The best physical parameters affecting the enzyme production were incubation time at 35 °C, and pH 5.5 for 48 h. The partially purified enzyme with 60% ammonium sulphate saturation with 1.38- fold purification showed good stability characteristics at a storage temperature of 4 °C and pH up to 8.5 for 21 days. Antibiofilm activity of purified α-amylase was determined against Pseudomonas aeruginosa (ATCC 35659) by spectrophotometric analysis and CLSM microscopic analysis. Results demonstrated biofilm inhibition by 84% of the formed Pseudomonas biofilm using a microtiter plate assay and thickness inhibition activity by 83% with live/Dead cells percentage of 17%/83% using CLSM protocol. CONCLUSIONS A highly stable purified α-amylase from B. cereus showed promising antibiofilm activity against one of the clinically important biofilm-forming MDR organisms that could be used as a cost-effective tool in pharmaceutical industries.
Collapse
Affiliation(s)
- Amal M Abo-Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ibrahim S Abd-El-Salam
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Faten A Mostafa
- Departemet of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | - Abd-El-Rahman A Mustafa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
13
|
Parashiva J, Nuthan BR, Bharatha M, Praveen R, Tejashwini P, Satish S. Response surface methodology based optimized production, purification, and characterization of L-asparaginase from Fusarium foetens. World J Microbiol Biotechnol 2023; 39:252. [PMID: 37442849 DOI: 10.1007/s11274-023-03684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. L-asparaginase obtained from bacteria exhibits hypersensitive reactions including various side effects. The present work aimed to optimize growth parameters for maximum production of L-asparaginase by Fusarium foetens through response surface methodology, its purification, and characterization. The optimization of L-asparaginase production by Fusarium foetens was initially done through a one-factor-at-a-time method. L-asparaginase production was further optimized using a central composite design based response surface methodology. The maximum L-asparaginase activity of 12.83 IU/ml was obtained under the following growth conditions; temperature-27.5 °C, pH-8, inoculum concentration-1.5 × 106 spores/ml, and incubation period-7 days. In comparison with the unoptimized growth conditions (4.58 IU/ml), the optimization led to a 2.65-fold increase in the L-asparaginase activity. The L-asparaginase from Fusarium foetens was purified 15.60-fold, with a yield of 39.89% using DEAE-cellulose column chromatography. After purification, the L-asparaginase activity was determined to be 127.26 IU/ml and the specific activity was found to be 231.38 IU/mg. The molecular mass was estimated to be approximately 37 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme showed optimum activity at pH 5, and a temperature of 40 °C. The enzyme showed 100% specificity towards L-asparagine and no activity towards L-glutamine. Its activity was enhanced by Mn2+, Fe2+, and Mg2, while it was inhibited by β-mercaptoethanol and EDTA. The Km and Vmax of the purified L-asparaginase were found to be 23.82 mM and 210.3 IU/ml respectively. The results suggest that Fusarium foetens could be a potent candidate for the bioprocessing of L-asparaginase at a large scale.
Collapse
Affiliation(s)
- Javaraiah Parashiva
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Purushotham Tejashwini
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | - Sreedharamurthy Satish
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
14
|
Saha SP, Ghosh S, Mazumdar D, Ghosh S, Ghosh D, Sarkar MM, Roy S. Valorization of banana peel into α-amylase using one factor at a time (OFAT) assisted artificial neural network (ANN) and its partial purification, characterization, and kinetics study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
15
|
Dudala SS, Venkateswarulu T, Venkata Narayana A, Krupanidhi S, D JB. Enhanced uricase production using novel Escherichia marmotae strain (DJDSS001): Characterization and optimization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023; 48:102649. [DOI: 10.1016/j.bcab.2023.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
16
|
Hosni S, Gani SSA, Orsat V, Hassan M, Abdullah S. Ultrasound-Assisted Extraction of Antioxidants from Melastoma malabathricum Linn.: Modeling and Optimization Using Box-Behnken Design. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020487. [PMID: 36677546 PMCID: PMC9863510 DOI: 10.3390/molecules28020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
This study presents modeling and optimization of ultrasound-assisted extraction (UAE) of Melastoma malabathricum with the objective of evaluating its phytochemical properties. This one-factor-at-a-time (OFAT) procedure was conducted to screen for optimization variables whose domains included extraction temperature (XET), ultrasonic time (XUT), solvent concentration (XSC), and sample-to-liquid ratio (XSLR). Response surface methodology (RSM) coupled with Box-Behnken design (BBD) was applied to establish optimum conditions for maximum antioxidant extraction. Modeling and optimization conditions of UAE at 37 kHz, XET 32 °C for XUT 16 min and dissolved in an XSC 70% ethanol concentration at a XSLR 1:10 ratio yielded scavenging effects on 2,2-diphenyl-1-picryl-hydrazyl (DPPH) at 96% ± 1.48 and recorded values of total phenolic content (TPC) and total flavonoid content (TFC) at 803.456 ± 32.48 mg GAE (gallic acid equivalents)/g, and 102.972 ± 2.51 mg QE (quercetin equivalents)/g, respectively. The presence of high flavonoid compounds was verified using TWIMS-QTOFMS. Chromatic evaluation of phytochemicals using gas chromatography-mass spectrometry (GC-MS) revealed the presence of 14 phytocompounds widely documented to play significant roles in human health. This study provides a comparative evaluation with other studies and may be used for validation of the species' potential for its much-acclaimed medicinal and cosmeceutical uses.
Collapse
Affiliation(s)
- Suzziyana Hosni
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
| | - Siti Salwa Abd Gani
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
- Natural Medicine and Products Research Laboratory, Institute of Biosceince, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Valérie Orsat
- Macdonald Campus, McGill University, Lakeshore Road, Sainte-Anne-de-Bellevue, QC 21111, Canada
| | - Masriana Hassan
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
| | - Sumaiyah Abdullah
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Retamoso C, Escalona N, González M, Barrientos L. Exploration of the initial photocatalytic activity parameters of αFe2O3–rutile for methylene blue discoloration in water through the OFAT process. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Singh R, Langyan S, Sangwan S, Gaur P, Khan FN, Yadava P, Rohatgi B, Shrivastava M, Khandelwal A, Darjee S, Sahu PK. Optimization and production of alpha-amylase using Bacillus subtilis from apple peel: Comparison with alternate feedstock. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Preparation and characterization of sugilite glass from basalt for α -amylase immobilization, statistical optimization of the immobilization process and description of free and immobilized enzyme. Heliyon 2022; 8:e09960. [PMID: 35874060 PMCID: PMC9305367 DOI: 10.1016/j.heliyon.2022.e09960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial α-amylase was immobilized on sugilite from modified basalt rock as a new carrier. A set of glass compositions based on sugilite formula KNa2M2Li3Si12O30 (M = Al or Mn or Fe) were prepared. The glasses were prepared through melting–quenching technique and samples of glass were converted to glass ceramic. Among the tested glasses and glass ceramic only sugilite glass based on M = Fe (BSF) give promising results. The sugilite BSF glass was characterized using DSC analysis, FTIR absorption, and SEM. The sugilite glass revealed high thermal resistant till ∼770 °C. Under optimized conditions of the Central composite design, the immobilization yield improved by 4.7-fold. The affinity to starch increased after enzyme immobilization by 4.3-fold. The lower rate of deactivation constant and the increase of t½ and D-value confirm the suitability of BSF and immobilization method in enhancing enzyme stability. The improvement in thermostability of immobilized α-amylase was judged by the change in thermodynamic parameters. In conclusion, the prepared sugilite BSF glass can be utilized as a new carrier suitable for stabilization of α-amylase enzyme by immobilization. Lemon peels induced α-amylase production by isolated Rhizobium sp. strain A1. Using basalt as raw material for sugilite glass synthesis as new immobilization carriers. Sugilite BSF glass the suitable carrier was characterized by DSC, FTIR and SEM. Central composite design increased immobilization yield by 4.7–fold. Thermal and thermodynamic properties emphasize increased stability upon immobilization.
Collapse
|
20
|
Zhang D, Bao Y, Ma Z, Zhou J, Chen H, Lu Y, Zhu L, Chen X. Optimization of fermentation medium and conditions for enhancing valinomycin production by Streptomyces sp. ZJUT-IFE-354. Prep Biochem Biotechnol 2022; 53:157-166. [PMID: 35323097 DOI: 10.1080/10826068.2022.2053991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Valinomycin is a cyclodepsipeptide antibiotic with a broad spectrum of biological activities, such as antiviral, antitumor, and antifungal activities. However, the low yield of valinomycin often limits its applications in medicine, agriculture, and industry. In our previous report, Streptomyces sp. ZJUT-IFE-354 was identified as a high-yielding strain of valinomycin. In this study, Plackett-Burman design (PBD) and response surface methodology (RSM) were used to optimize components of medium. The optimal medium contained 31 g/L glucose, 22 g/L soybean meal, and 1.6 g/L K2HPO4·3H2O, which could generate 262.47 ± 4.28 mg/L of valinomycin. Then, the culture conditions were optimized by a one-factor-at-a-time (OFAT) approach. The optimal conditions for the strain included a seed age of 24 h, an inoculum size of 8% (v/v), an incubation temperature of 28 °C, an initial pH of 7.2, an elicitor of 0.1% Bacillus cereus feeding at 24 h cultivation, and the feeding of 0.6% L-valine at 36 h cultivation. The final valinomycin production increased to 457.23 ± 9.52 mg/L, which was the highest yield ever reported. It highlights that RSM and OFAT may be efficient methods to enhance valinomycin production by Streptomyces sp. ZJUT-IFE-354.
Collapse
Affiliation(s)
- Dong Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yingling Bao
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi Ma
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jiawei Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
21
|
Onay M. Sequential modelling for carbohydrate and bioethanol production from Chlorella saccharophila CCALA 258: a complementary experimental and theoretical approach for microalgal bioethanol production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14316-14332. [PMID: 34608581 DOI: 10.1007/s11356-021-16831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Bioethanol production from microalgal biomass is an attractive concept, and theoretical methods by which bioenergy can be produced indicate saving in both time and efficiency. The aim of the present study was to investigate the efficiencies of carbohydrate and bioethanol production by Chlorella saccharophila CCALA 258 using experimental, semiempirical, and theoretical methods, such as response surface methods (RSMs) and an artificial neural network (ANN) through sequential modeling. In addition, the interactive response surface modeling for determining the optimum conditions for the variables was assessed. The results indicated that the maximum bioethanol concentration was 11.20 g/L using the RSM model and 11.17 g/L using the ANN model under optimum conditions of 6% (v/v %) substrate and 4% (v/v %) inoculum at 96-h fermentation, pH 6, and 40 °C. In addition, the value of the experimental data for carbohydrate concentration was 0.2510 g/g biomass at ANN with the maximums of 50% (v/v) wastewater concentration, 4% (m/m) hydrogen peroxide concentration, and 6000 U/mL enzyme activity. Finally, although the RSM model was more effective than the ANN model for predicting bioethanol concentration, the ANN model yielded more precise values than the RSM model for carbohydrate concentration.
Collapse
Affiliation(s)
- Melih Onay
- Department of Environmental Engineering, Computational & Experimental Biochemistry Lab, Van Yuzuncu Yil University, 65080, Van, Turkey.
| |
Collapse
|
22
|
John R, Rajan AP. Bioreactor level optimization of chromium(VI) reduction through Pseudomonas putida APRRJVITS11 and sustainable remediation of pathogenic DNA in water. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bioremediation is one of the indispensable features of Pseudomonas putida. The use of Pseudomonas has been proved to be an effective treatment of tannery released chromium (VI). The current study is the first attempt for the optimization of chromate reduction by Pseudomonas putida strain APRRJVITS11 in an optimized bench-scale bioreactor with successful thermo-pressure elimination of the strain thereby eliminating the health risk caused by antibiotic resistant genes (ARGs).
Results
The growth media, modified with optimized 1.0% nitrogen, 0.5% yeast extract and 0.3% sodium, showed enhanced bacterial growth for 72 h of incubation. The optimization of aeration (1.0 vvm) and agitation (150 rpm) rates enhanced the chromate reduction by about 40% at 72 h fermentation. Thermo-pressure pathogenic DNA degradation was achieved at 90 °C and 5868 Pa for 10 min.
Conclusions
Successful chromium reduction and total elimination of ARGs from effluent. A two-step treatment train was proposed for chromium reduction in the environment, which should be incorporated by the existing leather industries running on conventional treatment units.
Graphical Abstract
Collapse
|
23
|
Naveed M, Tianying H, Wang F, Yin X, Chan MWH, Ullah A, Xu B, Aslam S, Ali N, Abbas Q, Hussain I, Khan A, Khan AM. Isolation of lysozyme producing Bacillus subtilis Strains, identification of the new strain Bacillus subtilis BSN314 with the highest enzyme production capacity and optimization of culture conditions for maximum lysozyme production. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
24
|
Ousaadi MI, Merouane F, Berkani M, Almomani F, Vasseghian Y, Kitouni M. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp. ENVIRONMENTAL RESEARCH 2021; 201:111494. [PMID: 34171373 DOI: 10.1016/j.envres.2021.111494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
This study underlines the biotechnical valorization of the accumulated and unusable remains of agro-industrial orange fruit peel waste to produce α-amylase under submerged conditions by Streptomyces sp. KP314280 (20r). The response surface methodology based on central composite design (RSM-CCD) and artificial neural network coupled with a genetic algorithm (ANN-GA) were used to model and optimize the conditions for the α-amylase production. Four independent variables were evaluated for α-amylase activity including substrate concentration, inoculum size, sodium chloride powder (NaCl), and pH. A ten-fold cross-validation indicated that the ANN has a greater ability than the RSM to predict the α-amylase activity (R2ANN = 0.884 and R2RSM = 0.725). The analysis of variance indicated that the aforementioned four factors significantly affected the α-amylase activity. Additionally, the α-amylase production experiments were conducted according to the optimal conditions generated by the GA. The results indicated that the amylase yield increased by 4-fold. Moreover, the α-amylase production (12.19 U/mL) in the optimized medium was compatible with the predicted conditions outlined by the ANN-GA model (12.62 U/mL). As such, the ANN and GA combination is optimizable for α-amylase production and exhibits an accurate prediction which provides an alternative to other biological applications.
Collapse
Affiliation(s)
- Mouna Imene Ousaadi
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Fateh Merouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mahmoud Kitouni
- Laboratoire de Génie Microbiologie et Applications, Université des Frères Mentouri Constantine 1, Route Ain El Bey, 25000 Constantine, Algeria
| |
Collapse
|
25
|
Enhanced starch hydrolysis by α-amylase using copper oxide nanowires. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01931-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Bandal JN, Tile VA, Sayyed RZ, Jadhav HP, Azelee NIW, Danish S, Datta R. Statistical Based Bioprocess Design for Improved Production of Amylase from Halophilic Bacillus sp. H7 Isolated from Marine Water. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102833. [PMID: 34064563 PMCID: PMC8150710 DOI: 10.3390/molecules26102833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Amylase (EC 3.2.1.1) enzyme has gained tremendous demand in various industries, including wastewater treatment, bioremediation and nano-biotechnology. This compels the availability of enzyme in greater yields that can be achieved by employing potential amylase-producing cultures and statistical optimization. The use of Plackett-Burman design (PBD) that evaluates various medium components and having two-level factorial designs help to determine the factor and its level to increase the yield of product. In the present work, we are reporting the screening of amylase-producing marine bacterial strain identified as Bacillus sp. H7 by 16S rRNA. The use of two-stage statistical optimization, i.e., PBD and response surface methodology (RSM), using central composite design (CCD) further improved the production of amylase. A 1.31-fold increase in amylase production was evident using a 5.0 L laboratory-scale bioreactor. Statistical optimization gives the exact idea of variables that influence the production of enzymes, and hence, the statistical approach offers the best way to optimize the bioprocess. The high catalytic efficiency (kcat/Km) of amylase from Bacillus sp. H7 on soluble starch was estimated to be 13.73 mL/s/mg.
Collapse
Affiliation(s)
- J. N. Bandal
- Department of Microbiology, K.R.T. Arts, B.H. Commerce, and A.M. Science College, Nashik 422002, Maharashtra, India;
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| | - V. A. Tile
- Department of Microbiology, K.R.T. Arts, B.H. Commerce, and A.M. Science College, Nashik 422002, Maharashtra, India;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, Arts, Science & Commerce College, Shahada 425409, Maharashtra, India;
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| | - H. P. Jadhav
- Department of Microbiology, PSGVP Mandal’s, Arts, Science & Commerce College, Shahada 425409, Maharashtra, India;
| | - N. I. Wan Azelee
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China;
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, 613 00 Brno-sever-Černá Pole, Czech Republic
- Correspondence: (J.N.B.); (R.Z.S.); (R.D.)
| |
Collapse
|
27
|
Ekpenyong M, Asitok A, Antai S, Ekpo B, Antigha R, Ogarekpe N, Antai A, Ogbuagu U, Ayara N. Kinetic modeling and quasi-economic analysis of fermentative glycolipopeptide biosurfactant production in a medium co-optimized by statistical and neural network approaches. Prep Biochem Biotechnol 2021; 51:450-466. [PMID: 33881957 DOI: 10.1080/10826068.2020.1830414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study presents the kinetics of production of a glycolipopeptide biosurfactant in a medium previously co-optimized by response surface and neural network methods to gain some insight into its volumetric and specific productivities for possible scale-up towards industrial production. Significant kinetic parameters including maximum specific growth rate, µmax, specific substrate consumption rate, qs and specific biosurfactant yield, Yp/x were determined from logistic model parameters after comparison with other kinetic models. Results showed that bio-catalytic rates of lipase and urease reached exponential values within the first 12 h of fermentation leading to high specific rates of substrate consumption and bacterial growth. Volumetric biosurfactant production reached significantly high levels during prolonged stationary growth and specific urease activity. This suggests that glycolipopeptide biosynthesis may proceed through stationary phase transpeptidation of the glycolipid base. A high cross-correlation coefficient of 0.950 confirmed that substrate consumption and glycolipopeptide production occurred contemporaneously during the 66-h fermentation. The maximum biosurfactant concentration of 132.52 g/L, µmax of 0.292 h-1, qp of 1.674 g/gDCW/h, rp of 2.008 g/(Lh) and Yp/x of 4.413 g/g predicted by the selected logistic model and a unit cost of €0.57/g glycolipopeptide in the optimized medium may lead to technical and economic benefits.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Department of Microbiology, Faculty of Biological Sciences, Environmental Microbiology and Biotechnology Unit, University of Calabar, Calabar, Nigeria
| | - Atim Asitok
- Department of Microbiology, Faculty of Biological Sciences, Environmental Microbiology and Biotechnology Unit, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Department of Microbiology, Faculty of Biological Sciences, Environmental Microbiology and Biotechnology Unit, University of Calabar, Calabar, Nigeria
| | - Bassey Ekpo
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, Environmental Geochemistry Unit, University of Calabar, Calabar, Nigeria.,Exploration, Research and Services Section, Research and Development (R&D) Division, Nigerian National Petroleum Corporation (NNPC), Port-Harcourt, Nigeria
| | - Richard Antigha
- Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Nkpa Ogarekpe
- Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Uchechi Ogbuagu
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Ndem Ayara
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
28
|
Bhatt B, Prajapati V, Patel K, Trivedi U. Kitchen waste for economical amylase production using Bacillus amyloliquefaciens KCP2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Paul JS, Beliya E, Tiwari S, Patel K, Gupta N, Jadhav S. Production of biocatalyst α-amylase from agro-waste ‘rice bran’ by using Bacillus tequilensis TB5 and standardizing its production process. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|