1
|
Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Selvaraj R, Al-Muhtaseb A. Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1707. [PMID: 39513787 PMCID: PMC11547847 DOI: 10.3390/nano14211707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue.
Collapse
Affiliation(s)
- Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Rengaraj Selvaraj
- Department of Chemistry, Sultan Qaboos University, Muscat 123, Oman;
| | - Ala’a Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat 123, Oman;
- Sustainable Energy Research Centre, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
2
|
Puri N, Gupta A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. ENVIRONMENTAL RESEARCH 2023; 227:115786. [PMID: 37004858 DOI: 10.1016/j.envres.2023.115786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Various pesticides and organic compounds generated as a result of rapid industrialization and pharmaceutical companies pose a major threat to the environment. Novel photocatalysts based on zinc oxide and titanium oxide exhibit great potential towards absorption of these organic pollutants from wastewater. The photocatalysts possess various extraordinary properties like photocatalytic degradation potential, non-toxic and high stability. However, several limitations are also associated with the applications of these photocatalysts like poor affinity, particle agglomeration, high band gap and recovery issues. Hence, optimization is required to enhance their efficiency and at the same time make them cost effective and sustainable. The review covers the mechanism for water treatment, limitations and development of different modification strategies that improve the removal efficiency of titanium and zinc oxide based photocatalysts. Thus, further research in the field of photocatalysts can be encouraged for carrying out water remediation.
Collapse
Affiliation(s)
- Nidhi Puri
- Department of Applied Science and Humanities, Lloyd Institute of Engineering & Technology, Greater Noida, 201307, Uttar Pradesh, India
| | - Anjali Gupta
- School of Basic and Applied Science, Galgotias University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
3
|
Martins LKL, Lima-Faria JMD, Guimarães LN, Silva VCD, Moreira PC, Sabóia-Morais SMTD. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide promote liver toxicity in guppy (Poecilia reticulata): A histochemical and ultrastructural approach. ENVIRONMENTAL TOXICOLOGY 2022; 37:2244-2258. [PMID: 35661388 DOI: 10.1002/tox.23591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Citrate functionalized iron oxide nanoparticles (IONPs) are employed for various purposes-including environmental remediation but the interaction of IONPs with aquatic contaminants is poorly understood. Among those, glyphosate-based herbicides are toxic and affect target organs such as the liver. Evaluations of livers of female Poecilia reticulata by exposures to IONPs at a concentration of 0.3 mg/L were performed with association to: (1) 0.65 mg of glyphosate per litter and (2) 1.3 mg of glyphosate per litter of Roundup Original, and (3) glyphosate P.A at 0.65 mg/L. These associations were carried out progressively, after 7, 14, and 21 days. We detected circulatory disturbances, inflammatory responses, activation of the immune system, regressive changes, and progressive responses with changes in the connective tissue and decreased glycogen reserve from days 14 to 21. Ultrastructural changes in the Disse space and microvilli of hepatocytes indicated decreased contact surface area. In general, the damage was time and concentration dependent, increasing from 7 to 14 days and tending to stabilize from 14 to 21 days. Therefore, herbicide-associated IONPs functioned as xenobiotics inducing intense cellular detoxification processes and activation of hepatic immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Cesar Moreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Simone Maria Teixeira de Sabóia-Morais
- Laboratory of Cellular Behavior, Federal University of Goiás, Goiânia, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Briceño S, Reinoso C. CoFe 2O 4-chitosan-graphene nanocomposite for glyphosate removal. ENVIRONMENTAL RESEARCH 2022; 212:113470. [PMID: 35588779 DOI: 10.1016/j.envres.2022.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally, and there are several concerns about its environmental impact. In this work, we revealed the molecular interaction between chitosan, graphene, and CoFe2O4 nanoparticles with commercial glyphosate. The binding interaction was studied by Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structural and magnetic properties were characterized using scanning electron microscopy (SEM) and vibrating-sample magnetometry (VSM). To quantify the removal of glyphosate from water, UV-vis spectroscopy was used. Our results demonstrate the strong interaction between glyphosate with the components of the nanocomposite by the coordination through the phosphate and carboxylic groups and a complex formation with the nanoparticles. The advantage of this work is the use of a low-cost nanocomposite as bioadsorbent and the understanding of the binding interactions for glyphosate removal.
Collapse
Affiliation(s)
- Sarah Briceño
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119, Urcuquí, Ecuador.
| | - Carlos Reinoso
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119, Urcuquí, Ecuador
| |
Collapse
|
5
|
Diel JC, Franco DSP, Igansi AV, Cadaval TRS, Pereira HA, Nunes IDS, Basso CW, Alves MDCM, Morais J, Pinto D, Dotto GL. Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption. CHEMOSPHERE 2021; 283:131193. [PMID: 34139444 DOI: 10.1016/j.chemosphere.2021.131193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
In the present work, multi-walled carbon nanotubes (MWCNTs) were used as support material for the impregnation of metallic nanoparticles (MNPs) produced by green synthesis. The influences of the plant extracts (pomegranate (Punica Granatum), Eucalyptus, and pecan (Carya illinoinensis, leaves), metal species (copper and iron), metallic concentrations, and type of functionalization (OH and COOH) on the characteristics of the obtained materials were studied. The precursor and impregnated MWCNTs were characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, point of charge, N2 adsorption/desorption isotherms and, X-ray photoelectron spectroscopy. All the synthesized materials were tested as adsorbents to remove glyphosate (GLY) in an aqueous medium. The MWCNTs were resistant to withstand the synthesis process, preserving its structure and morphological characteristics. The copper and iron on the surface of MWCNTS confirm the successful synthesis and impregnation of the MNPs. The MWCNTs impregnated with high metallic concentrations showed favorable adsorption of GLY. The adsorption capacity and percentage of removal were 21.17 mg g-1 and 84.08%, respectively, for the MWCNTs impregnated with iron MNPs using the pecan leaves as a reducing agent. The results indicated that an advanced adsorbent for GLY could be obtained by green synthesis, using MWCNTs as precursors and pecan leaves as a reducing agent.
Collapse
Affiliation(s)
- Júlia C Diel
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Brazil.
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Brazil.
| | - Andrei V Igansi
- School of Chemistry and Food, Federal University of Rio Grande-FURG, Brazil.
| | - Tito R S Cadaval
- School of Chemistry and Food, Federal University of Rio Grande-FURG, Brazil.
| | | | - Isaac Dos S Nunes
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Brazil.
| | - Charles W Basso
- Institute of Physics, Federal University of Rio Grande do Sul-UFRGS, Brazil.
| | | | - Jonder Morais
- Institute of Physics, Federal University of Rio Grande do Sul-UFRGS, Brazil.
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, Colombia; Facultad de Ingeniería y Arquitectura, Universidad de Lima, Peru.
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, Brazil; Chemical Department, Federal University of Santa Maria-UFSM, Brazil.
| |
Collapse
|
6
|
Peng G, Tang B, Zhou X. Effect of Preparation Methods on the Adsorption of Glyphosate by Calcined Ca-Al Hydrotalcite. ACS OMEGA 2021; 6:15742-15749. [PMID: 34179618 PMCID: PMC8223221 DOI: 10.1021/acsomega.1c01025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 05/26/2023]
Abstract
Calcined Ca-Al hydrotalcites were prepared by the clean method (Ca-LDO-1) and traditional co-precipitation method (Ca-LDO-2), respectively. The effect of the preparation method on the adsorption of glyphosate by calcined Ca-Al hydrotalcites was investigated. The adsorbents were also characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, inductively coupled plasma optical emission spectroscopy (ICP-OES), and low-temperature N2 adsorption-desorption, respectively. Compared with Ca-LDO-2, Ca-LDO-1 had higher specific surface area and pore volume, which caused it to show better adsorption performance and reusability for the adsorbing of glyphosate. In addition, the kinetics and thermodynamics of the adsorption of glyphosate by Ca-LDO-1 were studied. The results showed that it was more consistent with the pseudo-second-order kinetic equation and Langmuir isotherm equation.
Collapse
Affiliation(s)
- Guanping Peng
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Bei Tang
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| | - Xi Zhou
- Department of Food and Chemical
Engineering, Shaoyang University, Shaoyang, Hunan 422000, PR China
| |
Collapse
|
7
|
Ivănescu B, Burlec AF, Crivoi F, Roșu C, Corciovă A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules 2021; 26:3061. [PMID: 34065533 PMCID: PMC8160890 DOI: 10.3390/molecules26103061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
The Artemisia genus includes a large number of species with worldwide distribution and diverse chemical composition. The secondary metabolites of Artemisia species have numerous applications in the health, cosmetics, and food sectors. Moreover, many compounds of this genus are known for their antimicrobial, insecticidal, parasiticidal, and phytotoxic properties, which recommend them as possible biological control agents against plant pests. This paper aims to evaluate the latest available information related to the pesticidal properties of Artemisia compounds and extracts and their potential use in crop protection. Another aspect discussed in this review is the use of nanotechnology as a valuable trend for obtaining pesticides. Nanoparticles, nanoemulsions, and nanocapsules represent a more efficient method of biopesticide delivery with increased stability and potency, reduced toxicity, and extended duration of action. Given the negative impact of synthetic pesticides on human health and on the environment, Artemisia-derived biopesticides and their nanoformulations emerge as promising ecofriendly alternatives to pest management.
Collapse
Affiliation(s)
- Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Crăița Roșu
- Department of Experimental and Applied Biology, Institute of Biological Research Iasi, 47 Lascăr Catargi Street, 700107 Iasi, Romania;
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|
8
|
Calcium oxyhydroxide (CaO/Ca(OH)2) nanoparticles: Synthesis, characterization and evaluation of their capacity to degrade glyphosate-based herbicides (GBH). ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1654. [PMID: 32842495 PMCID: PMC7558820 DOI: 10.3390/nano10091654] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Nanotechnology is a tool that in the last decade has demonstrated multiple applications in several sectors, including agroindustry. There has been an advance in the development of nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality stimulants, among other applications. The nanoencapsulation process not only protects the active ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various nanomaterials on the morphology, metabolomics, and genetic modification of several crops.
Collapse
Affiliation(s)
- Luis A. Paramo
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ana A. Feregrino-Pérez
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ramón Guevara
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Sandra Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, Chemistry Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico;
| | - Karen Esquivel
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| |
Collapse
|