1
|
Olvera-Ureña E, Lopez-Tellez J, Vizueto MM, Hidalgo-Ledezma JG, Martinez-Quiroz B, Rodriguez JA. Lipase-Assisted Synthesis of Alkyl Stearates: Optimization by Taguchi Design of Experiments and Application as Defoamers. Molecules 2023; 29:195. [PMID: 38202778 PMCID: PMC10780605 DOI: 10.3390/molecules29010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
The present work proposes the optimization of enzymatic synthesis of alkyl stearates using stearic acid, alkyl alcohols (C1-OH, C2-OH, C4-OH, C8-OH and C16-OH) and Candida rugosa lipase by a L9 (34) Taguchi-type design of experiments. Four variables were evaluated (reaction time, temperature, kU of lipase and alcohol:stearic acid molar ratio), ensuring that all variables were critical. In optimal conditions, five stearates were obtained with conversions > 90%. The obtained products were characterized by nuclear magnetic resonance (NMR). Additionally, the defoaming capacity of the five stearates was evaluated, obtaining better performance for the compound synthesized from C8-OH alcohol.
Collapse
Affiliation(s)
- Enoch Olvera-Ureña
- Area Academica de Quimica, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Jorge Lopez-Tellez
- Area Academica de Quimica, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - M. Monserrat Vizueto
- Soluciones Quimicas Globales, S. de R.L.M.I., Rio Industrial 210, 47, Mineral de la Reforma 42186, Hidalgo, Mexico
| | - J. Guadalupe Hidalgo-Ledezma
- Soluciones Quimicas Globales, S. de R.L.M.I., Rio Industrial 210, 47, Mineral de la Reforma 42186, Hidalgo, Mexico
| | - Baltazar Martinez-Quiroz
- Soluciones Quimicas Globales, S. de R.L.M.I., Rio Industrial 210, 47, Mineral de la Reforma 42186, Hidalgo, Mexico
| | - Jose A. Rodriguez
- Area Academica de Quimica, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico
| |
Collapse
|
2
|
Wang L, Wang H, Fan J, Han Z. Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166982. [PMID: 37741378 DOI: 10.1016/j.scitotenv.2023.166982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Biodiesel is considered as one of the most promising alternative fuels due to the depletion of fossil fuels and the need to cope with potential energy shortages in the future. This article provides a thorough analysis of biodiesel synthesis, covering a variety of topics including oil feedstock, synthesis methods, catalysts, and enhancement technologies. Different oil feedstock for the synthesis of biodiesel is compared in the review, including edible plant oil, non-edible plant oil, waste cooking oil, animal fat, microbial oil, and algae oil. In addition, different methods for the synthesis of biodiesel are discussed, including direct use, blending, thermal cracking, microemulsions, and transesterification processes, highlighting their respective advantages and disadvantages. Among them, the transesterification method is the most commonly used and a thorough examination is given of the benefits and drawbacks of utilizing enzymatic, heterogeneous, and homogeneous catalysts in this process. Moreover, this article provides an overview of emerging intensification technologies, such as ultrasonic and microwave-assisted, electrolysis, reactive distillation, and microreactors. The benefits and limitations of these emerging technologies are also reviewed. The contribution of this article is offering a thorough and detailed review of biodiesel production technologies, focusing mainly on recent advances in enhanced chemical reaction processes. This provides a resource for researchers to assess and compare the latest advancements in their investigations. It also opens up the potential for enhancing the value of oil feedstocks efficiently, contributing to the development of new energy sources.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China; Research Institute, Jilin University, Yibin 644500, People's Republic of China
| | - Hanyue Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, People's Republic of China.
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| |
Collapse
|
3
|
Cavali M, Benbelkacem H, Kim B, Bayard R, Libardi Junior N, Gonzaga Domingos D, Woiciechowski AL, Castilhos Junior ABD. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117994. [PMID: 37119630 DOI: 10.1016/j.jenvman.2023.117994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L-1). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil.
| | | | - Boram Kim
- Univ Lyon, INSA Lyon, DEEP, EA 7429, 69621, Villeurbanne, France
| | - Rémy Bayard
- Univ Lyon, INSA Lyon, DEEP, EA 7429, 69621, Villeurbanne, France
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| | - Dayane Gonzaga Domingos
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, 81531-908, Paraná, Brazil
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, 88040-970, Santa Catarina, Brazil
| |
Collapse
|
4
|
Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, Bayard R, Benbelkacem H, de Castilhos Junior AB. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159627. [PMID: 36280070 DOI: 10.1016/j.scitotenv.2022.159627] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil.
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Julia Dutra de Sena
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Hassen Benbelkacem
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. ENERGIES 2022. [DOI: 10.3390/en15093381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The environmental context causes the use of renewable energy to increase, with the aim of finding alternatives to fossil-based products such as fuels. Biodiesel, an alternative to diesel, is now a well-developed solution, and its production from renewable resources makes it perfectly suitable in the environmental context. In addition, it is biodegradable, non-toxic and has low greenhouse gas emissions: reduced about 85% compared to diesel. However, the feedstock used to produce biodiesel competes with agriculture and the application of chemical reactions is not advantageous with a “green” process. Therefore, this review focuses only on bioprocesses currently taking an important place in the production of biodiesel and allow high yields, above 90%, and with very few produced impurities. In addition, the use of waste oils as feedstock, which now accounts for 10% of feedstocks used in the production of biodiesel, avoids competition with agriculture. To present a complete life-cycle of oils in this review, a second part will focus on the valorization of the biodiesel by-product, glycerol. About 10% of glycerol is generated during the production of biodiesel, so it should be recovered to high value-added products, always based on bioprocesses. This review will also present existing techniques to extract and purify glycerol. In the end, from the collection of feedstocks to the production of CO2 during the combustion of biodiesel, this review presents the steps using the “greener” possible processes.
Collapse
|
6
|
Performance of Liquid Eversa on Fatty Acid Ethyl Esters Production by Simultaneous Esterification/Transesterification of Low-to-High Acidity Feedstocks. Catalysts 2021. [DOI: 10.3390/catal11121486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liquid Eversa was evaluated in hydrolysis of acylglycerols from soybean oil deodorizer distillate (SODD), as well as simultaneous esterification/transesterification of SODD with low-to-high free fatty acids (FFAs) content using ethanol as acyl acceptor. Hydrolysis of SODD at mild temperature (37 °C) and without pH control (water:SODD mass ratio of 4:1) increased its FFAs content from 17.2 wt.% to 72.5 wt.% after 48 h reaction. A cold saponification of SODD allowed a saponification phase (SODD-SP) to be recovered with 93 wt.% saponification index and 2.25 wt.% FFAs content, which was used to find the experimental conditions for simultaneous esterification/transesterification reactions by experimental design. Temperature of 35 °C, enzyme concentration of 8.36 wt.%, and molar ratio of 3.64:1 (ethanol:SODD-SP) were found as the best conditions for fatty acid ethyl esters (FAEEs) production from SODD-SP (86.56 wt.% ester yield after 23 h reaction). Under the same reaction conditions, crude SODD (17.2 wt.% FFAs) and hydrolyzed SODD (72.5 wt.% FFAs) yielded products containing around 80 wt.% FAEEs. Caustic treatment could increase the ester content to around 90 wt.% and reduce the FFAs content to less than 1 wt.%. Our results show the good performance of liquid Eversa in aqueous (hydrolysis reactions) and organic (esterification/transesterification reactions) media.
Collapse
|
7
|
Kinetics of Soybean Oil Hydrolysis on Niobium Catalysts. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Cavali M, Bueno A, Fagundes AP, Priamo WL, Bilibio D, Mibielli GM, Wancura JH, Bender JP, Oliveira JV. Liquid lipase-mediated production of biodiesel from agroindustrial waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|