1
|
Marques da Silva M, Santana Moura YA, Leite AHP, Souza KLDS, Brandão Costa RMP, Nascimento TP, Porto ALF, Bezerra RP. Toxicological assays in the evaluation of safety assessment of fibrinolytic enzymes. Drug Chem Toxicol 2024; 47:1393-1403. [PMID: 39155645 DOI: 10.1080/01480545.2024.2367561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) cause 30% of deaths each year, and in 2030, around 23.6 million people will die due to CVDs. The major challenge is to obtain molecules with minimal adverse reactions that can prevent and dissolve blood clots. In this context, fibrinolytic enzymes from diverse microorganism sources have been extensively investigated due to their potential to act directly and specifically on the fibrin clot, preventing side effects and performing potential thrombolytic effects. However, most researches focus on the purification and characterization of proteases, with little emphasis on the mechanism of action and pharmacological characteristics, including toxicity assays which are essential to assess safety and side effects. Therefore, this work aims to emphasize the importance of evaluations indicating the toxicological profile of fibrinolytic proteases through in vitro and in vivo tests. Both types of assays contribute as preclinical stage in drug development and are crucial for clinical applications. This scarcity creates arbitrary barriers to further studies. This work should further encourage the development of studies to ensure the safety and effectivity of fibrinolytic proteases.
Collapse
Affiliation(s)
- Marllyn Marques da Silva
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Yanara Alessandra Santana Moura
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Raquel Pedrosa Bezerra
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| |
Collapse
|
2
|
Santana CEM, Barros GP, Canuto NS, Dos Santos TE, Bharagava RN, Liu J, Ferreira LFR, Souza RL. Thermosensitive polymer-assisted extraction and purification of fungal laccase from citrus pulp wash effluent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2110-2119. [PMID: 37919871 DOI: 10.1002/jsfa.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND This study explores the use of liquid-liquid extraction with thermosensitive polymers for producing laccase (Lac) from Pleurotus sajor-caju. This process leverages liquid waste from the citrus industry, specifically pulp wash. The research delves into extractive fermentation and thermoseparation, both processes being facilitated by a polymer exhibiting a lower critical solution temperature transition. RESULTS Key factors considered include the choice of polymer, its concentration, pH, separation temperature, and the behavior of the polymer-rich phase post-extractive fermentation concerning the lower critical solution temperature. Notably, under conditions of 45% by weight of Pluronic L-61 and pH 5.0 at 25 °C, the Lac resulted in an enhancement in the purification factor of 28.4-fold, compared with the Lac obtained directly from the fermentation process on the eighth day. There was an 83.6% recovery of the Lac enzyme in the bottom phase of the system. Additionally, the unique properties of Pluronic L-61, which can induce phase separation and also allow for thermoseparation, led to a secondary fraction (aqueous solution) of Lac with purification factor of 2.1 ± 0.1-fold (at 32 ± 0.9 °C and 30 ± 0.3 min without stirring) from the polymeric phase (top phase). Fourier-transform infrared analysis validated the separation data, particularly highlighting the α-helix content in the amide I region (1600-1700 cm-1 ). CONCLUSION In summary, the insights from this study pave the way for broader industrial applications of these techniques, underscoring benefits like streamlined process integration, heightened selectivity, and superior separation efficacy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Ram N Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environment Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Jiayang Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
- Gongda Kaiyuan Environmental Protection Technology Co., Ltd, Chuzhou, China
| | - Luiz F R Ferreira
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Ranyere L Souza
- Universidade Tiradentes (UNIT), Aracaju, Brazil
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| |
Collapse
|
3
|
Aqueous biphasic systems as a key tool for food processing. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Couto MTTD, Silva AVD, Sobral RVDS, Rodrigues CH, Cunha MNCD, Leite ACL, Figueiredo MDVB, de Paula Oliveira J, Costa RMPB, Conniff AES, Porto ALF, Nascimento TP. Production, extraction and characterization of a serine protease with fibrinolytic, fibrinogenolytic and thrombolytic activity obtained by Paenibacillus graminis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhao L, Lin X, Fu J, Zhang J, Tang W, He Z. A Novel Bi-Functional Fibrinolytic Enzyme with Anticoagulant and Thrombolytic Activities from a Marine-Derived Fungus Aspergillus versicolor ZLH-1. Mar Drugs 2022; 20:md20060356. [PMID: 35736159 PMCID: PMC9229710 DOI: 10.3390/md20060356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fibrinolytic enzymes are important components in the treatment of thrombosis-associated disorders. A new bi-functional fibrinolytic enzyme, versiase, was identified from a marine-derived fungus Aspergillus versicolor ZLH-1. The enzyme was isolated from the fungal culture through precipitation with ammonium sulfate at 90% saturation. Additionally, it was further purified by DEAE-based ion-exchange chromatography, with a recovery of 20.4%. The fibrinolytic enzyme presented as one band on both SDS-PAGE and fibrin-zymogram, with a molecular mass of 37.3 kDa. It was elucidated as a member of metalloprotease in M35 family by proteomic approaches. The homology-modeling analysis revealed that versiase shares significant structural homology wuth the zinc metalloendopeptidase. The enzyme displayed maximum activity at 40 °C and pH 5.0. The activity of versiase was strongly inhibited by the metalloprotease inhibitors EDTA and BGTA. Furthermore, versiase hydrolyzed fibrin directly and indirectly via the activation of plasminogen, and it was able to hydrolyze the three chains (α, β, γ) of fibrin(ogen). Additionally, versiase demonstrated promising thrombolytic and anticoagulant activities, without many side-effects noticed. In conclusion, versiase appears to be a potent fibrinolytic enzyme deserving further investigation.
Collapse
Affiliation(s)
- Lihong Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Jingyun Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Jun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Wei Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
| | - Zengguo He
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.Z.); (J.F.); (J.Z.); (W.T.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
- Correspondence: ; Tel./Fax: +86-186-1113-7588
| |
Collapse
|
6
|
Sustainable valorization of papaya peels for thrombolytic cysteine protease isolation by ultrasound assisted disruptive liquid phase microextraction with task specific switchable natural deep eutectic solvents. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Muniasamy R, Balamurugan BS, Rajamahendran D, Rathnasamy S. Switchable deep eutectic solvent driven micellar extractive fermentation of ultrapure fibrin digesting enzyme from Bacillus subtilis. Sci Rep 2022; 12:903. [PMID: 35042908 PMCID: PMC8766521 DOI: 10.1038/s41598-022-04788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fibrinolytic protease (FLP) is a therapeutic enzyme used in the treatment of thrombolytic diseases. The present study proposed the concept of pH-driven swappable micellar two-phase extraction for the concurrent production and purification of FLP from Bacillus subtilis at cloud point extraction. Extractive fermentation was carried out with a pH swap mechanism and FLP was extracted to the top phase by surfactant deep eutectic solvents (SDES). Shrimp waste was chosen as a sustainable low-cost substrate that yielded a maximum protease of 185 U/mg. Six SDESs were synthesized with nonionic surfactants as hydrogen bond donors and quaternary ammonium salts as hydrogen bond acceptors and their association was confirmed by H1 NMR. Thermophysical investigation of the synthetic SDES was accomplished as a function of temperature. Response surface methodology for extractive fermentation was performed with the concentration of SADES (35% w/v), Na2SO4 (15% w/v) and pH (6.3) as variables and the enzyme activity (248 IU/mg) as a response. Furthermore, purification using gel filtration chromatography was used to quantify the amount of enzyme obtained in the extraction phase (849 IU/ml). After final purification with an anion exchange column, the maximum purity fold (22.32) with enzyme activity (1172 IU/ml) was achieved. The in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavani Sowndharya Balamurugan
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Rajamahendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Senthilkumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
8
|
Alves AN, Nascimento PA, Fontan RDCI, Sousa Júnior EC, Bonomo P, Veloso CM, Bonomo RCF. Extraction of protease from ora‐pro‐nobis (
Pereskia aculeata
Miller) and partial purification in polyethylene glycol + sodium phosphate aqueous two‐phase system. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annie Nolasco Alves
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | | | | | | | - Paulo Bonomo
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | | | | |
Collapse
|
9
|
Minh NH, Trang HTQ, Van TB, Loc NH. Production and purification of nattokinase from Bacillus subtilis. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2021.2005622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Nguyen Hoang Minh
- Clinical Skills Laboratory, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | | | - Tran Bao Van
- Department of Biotechnology, University of Sciences, Hue University, Hue, Vietnam
| | - Nguyen Hoang Loc
- Department of Biotechnology, University of Sciences, Hue University, Hue, Vietnam
| |
Collapse
|
10
|
Altaf F, Wu S, Kasim V. Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Front Mol Biosci 2021; 8:680397. [PMID: 34124160 PMCID: PMC8194080 DOI: 10.3389/fmolb.2021.680397] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis, a major cause of deaths in this modern era responsible for 31% of all global deaths reported by WHO in 2017, is due to the aggregation of fibrin in blood vessels which leads to myocardial infarction or other cardiovascular diseases (CVDs). Classical agents such as anti-platelet, anti-coagulant drugs or other enzymes used for thrombosis treatment at present could leads to unwanted side effects including bleeding complication, hemorrhage and allergy. Furthermore, their high cost is a burden for patients, especially for those from low and middle-income countries. Hence, there is an urgent need to develop novel and low-cost drugs for thrombosis treatment. Fibrinolytic enzymes, including plasmin like proteins such as proteases, nattokinase, and lumbrokinase, as well as plasminogen activators such as urokinase plasminogen activator, and tissue-type plasminogen activator, could eliminate thrombi with high efficacy rate and do not have significant drawbacks by directly degrading the fibrin. Furthermore, they could be produced with high-yield and in a cost-effective manner from microorganisms as well as other sources. Hence, they have been considered as potential compounds for thrombosis therapy. Herein, we will discuss about natural mechanism of fibrinolysis and thrombus formation, the production of fibrinolytic enzymes from different sources and their application as drugs for thrombosis therapy.
Collapse
Affiliation(s)
- Farwa Altaf
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Lu M, Gao Z, Xing S, Long J, Li C, He L, Wang X. Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme. Int J Biol Macromol 2021; 177:601-609. [PMID: 33636270 DOI: 10.1016/j.ijbiomac.2021.02.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
Fermented bean foods are a crucial source of fibrinolytic enzymes. The presented study aimed to purify, characterize, and chemically modify Bacillus velezensis SN-14 fibrinolytic enzyme. The fibrinolytic enzyme was purified using CTAB/isooctane/hexyl alcohol/n-butyl alcohol reverse micellar system, and the purified enzyme was chemically modified to improve its enzymatic activity and stability. Enzyme activity recovery and the purification fold for this enzyme were 44.5 ± 1.9% and 4.93 ± 0.05 fold, respectively. SDS-PAGE results showed that the molecular weight of the purified fibrinolytic enzyme was around 28 kDa. Besides, the optimum temperature and pH of the purified fibrinolytic enzyme were 37 °C and 8-9, respectively. Fe2+, mPEG5000, and pepsin were used for chemical modification and for improving the activity and stability of the purified enzyme. Thermal and acid-base stability of chemically modified enzymes increased significantly, whereas enzymatic activity increased by 7.3 times. After 30 d of frozen storage, the modified enzyme's activity was remarkably lower (33.2%) than the unmodified enzyme (60.6%). The current study on B. velezensis SN-14 fibrinolytic enzyme and chemical modification method using Fe2+, mPEG5000, and pepsin provide a reference for developing fibrinolytic drugs and foods.
Collapse
Affiliation(s)
- Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jia Long
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
12
|
Moula Ali AM, Bavisetty SCB. Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: A comprehensive review. Int J Biol Macromol 2020; 163:1498-1517. [PMID: 32781120 DOI: 10.1016/j.ijbiomac.2020.07.303] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Fibrinolytic enzymes are proteases responsible for cleavage of fibrin mesh in thrombus clots, which are the primary causative agents in cardiovascular diseases. Developing safe, effective and cheap thrombolytic agents are important for prevention and cure of thrombosis. Although a wide variety of sources have been discovered for fibrinolytic enzymes, only few of them have been employed in clinical and therapeutic applications due to the drawbacks such as high cost of production, low stability of enzyme or therapeutic side effects. However, the discovery of new fibrinolytic enzymes requires complex purification stages and characterization, which gives an insight into their diverse modes of action. Post-discovery, approaches such as a) statistical optimization for fermentative bioprocessing and b) genetic engineering are advantageous in providing economic viability by finding simple and cost-effective medium, strain development with sufficient nutrient supplements for stable and high-level production of recombinant enzyme. This review provides a comprehensive understanding of different sources, purification techniques, production through genetic engineering approaches and statistical optimization of fermentation parameters as proteases have a wide variety of industrial and biotechnological applications making 60% of total enzyme market worldwide. New strategies targeting increased enzyme yields, non-denaturing environments, improved stability, enzyme activity and strain improvement have been discussed.
Collapse
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Science and Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sri Charan Bindu Bavisetty
- Department of Fermentation Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
13
|
Elleuch J, Hadj Kacem F, Ben Amor F, Hadrich B, Michaud P, Fendri I, Abdelkafi S. Extracellular neutral protease from Arthrospira platensis: Production, optimization and partial characterization. Int J Biol Macromol 2020; 167:1491-1498. [PMID: 33202265 DOI: 10.1016/j.ijbiomac.2020.11.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Proteases are industrially important catalysts. They belong to a complex family of enzymes that perform highly focused proteolysis functions. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. In the present study, a novel extracellular neutral protease produced from Arthrospira platensis was detected and characterized. Its proteolytic activity was strongly activated by β-mercaptoethanol, 5,5-dithio-bis-(2-nitrobenzoic acid) and highly inhibited by Hg2+ and Zn2+ metal ions which support the fact that the studied protease belongs to the cysteine protease family. Using statistical modelling methodology, the logistic model has been selected to predict A. platensis growth-kinetic values. The optimal culture conditions for neutral protease production were found using Box-Behnken Design. The maximum experimental protease activities (159.79 U/mL) was achieved after 13 days of culture in an optimized Zarrouk medium containing 0.625 g/L NaCl, 0.625 g/L K2HPO4 and set on 9.5 initial pH. The extracellular protease of A. platensis can easily be used in the food industry for its important activity at neutral pH and its low production cost since it is a valuation of the residual culture medium after biomass recovery.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Farah Hadj Kacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoroire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|