1
|
Azman AA, Muhd Noor ND, Leow ATC, Mohd Noor SA, Mohamad Ali MS. Identification and characterization of a promiscuous metallohydrolase in metallo-β-lactamase superfamily from a locally isolated organophosphate-degrading Bacillus sp. strain S3wahi. Int J Biol Macromol 2024; 271:132395. [PMID: 38761915 DOI: 10.1016/j.ijbiomac.2024.132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In this present study, characteristics and structure-function relationship of an organophosphate-degrading enzyme from Bacillus sp. S3wahi were described. S3wahi metallohydrolase, designated as S3wahi-MH (probable metallohydrolase YqjP), featured the conserved αβ/βα metallo-β-lactamase-fold (MBL-fold) domain and a zinc bimetal at its catalytic site. The metal binding site of S3wahi-MH also preserves the H-X-H-X-D-H motif, consisting of specific amino acids at Zn1 (Asp69, His70, Asp182, and His230) and Zn2 (His65, His67, and His137). The multifunctionality of S3wahi-MH was demonstrated through a steady-state kinetic study, revealing its highest binding affinity (KM) and catalytic efficiency (kcat/KM) for OP compound, paraoxon, with values of 8.09 × 10-6 M and 4.94 × 105 M-1 s-1, respectively. Using OP compound, paraoxon, as S3wahi-MH native substrate, S3wahi-MH exhibited remarkable stability over a broad temperature range, 20 °C - 60 °C and a broad pH tolerance, pH 6-10. Corresponded to S3wahi-MH thermal stability characterization, the estimated melting temperature (Tm) was found to be 72.12 °C. S3wahi-MH was also characterized with optimum catalytic activity at 30 °C and pH 8. Additionally, the activity of purified S3wahi-MH was greatly enhanced in the presence of 1 mM and 5 mM of manganese (Mn2+), showing relative activities of 1323.68 % and 2073.68 %, respectively. The activity of S3wahi-MH was also enhanced in the presence of DMSO and DMF, showing relative activities of 270.37 % and 307.41 %, respectively. The purified S3wahi-MH retained >60 % residual activity after exposure to non-ionic Tween series surfactants. Nevertheless, the catalytic activity of S3wahi-MH was severely impacted by the treatment of SDS, even at low concentrations. Considering its enzymatic properties and promiscuity, S3wahi-MH emerges as a promising candidate as a bioremediation tool in wide industrial applications, including agriculture industry.
Collapse
Affiliation(s)
- Ameera Aisyah Azman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Siti Aminah Mohd Noor
- Center for Defence Foundation Studies, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
2
|
Chen J, Guo Z, Xin Y, Gu Z, Zhang L, Guo X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161510. [PMID: 36632903 DOI: 10.1016/j.scitotenv.2023.161510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain. Developing efficient and environmentally friendly solutions for the decontamination of OPs is a long-term challenge. Microbial enzymes show potential application as natural and green biocatalysts. Thus, utilizing OP-degrading enzymes for environmental decontamination presents significant advantages, as these enzymes can rapidly hydrolyze OPs; are environmentally friendly, nonflammable, and noncorrosive; and can be discarded safely and easily. Here, the properties, structure and catalytic mechanism of various typical OP-degrading enzymes are reviewed. The methods and effects utilized to improve the expression level, catalytic performance and stability of OP-degrading enzymes were systematically summarized. In addition, the immobilization of OP-degrading enzymes was explicated emphatically, and the latest progress of cascade reactions based on immobilized enzymes was discussed. Finally, the latest applications of OP-degrading enzymes were summarized, including biosensors, nanozyme mimics and medical detoxification. This review provides guidance for the future development of OP-degrading enzymes and promotes their application in the field of environmental bioremediation and medicine.
Collapse
Affiliation(s)
- Jianxiong Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Efremenko E, Lyagin I, Aslanli A, Stepanov N, Maslova O, Senko O. Carrier Variety Used in Immobilization of His 6-OPH Extends Its Application Areas. Polymers (Basel) 2023; 15:591. [PMID: 36771892 PMCID: PMC9920489 DOI: 10.3390/polym15030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Organophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His6-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and N-acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His6-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc. The use of computer modeling methods in the development of immobilized His6-OPH samples provides in silico prediction of emerging interactions between the enzyme and immobilizing polymer, which may have negative effects on the catalytic properties of the enzyme, and selection of the best options for experiments in vitro and in vivo. This review is aimed at analysis of known developments with immobilized His6-OPH, which allows to recognize existing recent trends in this field of research, as well as to identify the reasons limiting the use of a number of polymer molecules for the immobilization of this enzyme.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
4
|
Lin LL, Lu BY, Chi MC, Huang YF, Lin MG, Wang TF. Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations. Appl Microbiol Biotechnol 2022; 106:1991-2006. [PMID: 35230495 DOI: 10.1007/s00253-022-11836-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/27/2022]
Abstract
The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 μg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis γ-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.
Collapse
Affiliation(s)
- Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Bo-Yuan Lu
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Yu-Fen Huang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei City, 11529, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City, 60004, Taiwan.
| |
Collapse
|
5
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
6
|
Wang Y, Wu H, Zhang W, Xu W, Mu W. Efficient control of acrylamide in French fries by an extraordinarily active and thermo-stable l-asparaginase: A lab-scale study. Food Chem 2021; 360:130046. [PMID: 34023713 DOI: 10.1016/j.foodchem.2021.130046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
As a potential carcinogen, acrylamide (AA) widely exists in starch-rich foods during frying, triggering international health alerts. l-Asparaginase (l-ASNase, EC 3.5.1.1) could efficiently inhibit the AA by hydrolyzing its precursor l-Asparagine. Here, a novel recombinant l-ASNase from Palaeococcus ferrophilus was identified for the first time. The purified enzyme exhibited its highest activity at pH 8.5 and 95 °C and retained more than 70% relative activity after incubation at 80 °C for 2 h. Compared to untreated French fries, the AA content in the enzyme-treated (10 U/mL, 85 °C, 15 min) French fries was significantly reduced by 79%. Notably, the l-ASNase could remain over 98% of initial activity after three months of storage at 4 °C, suggesting good storage stability. These results demonstrated that P. ferrophilusl-ASNase could be a great candidate in controlling AA in the food industry, especially at high blanching temperature.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Catalytic Performance of a Recombinant Organophosphate-Hydrolyzing Phosphotriesterase from Brevundimonas diminuta in the Presence of Surfactants. Catalysts 2021. [DOI: 10.3390/catal11050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phosphotriestease (PTE), also known as parathion hydrolase, has the ability to hydrolyze the triester linkage of organophosphate (OP) pesticides and chemical warfare nerve agents, making it highly suitable for environment remediation. Here, we studied the effects of various surfactants and commercial detergents on the esterase activity of a recombinant PTE (His6-tagged BdPTE) from Brevundimonas diminuta. Enzymatic assays indicated that His6-tagged BdPTE was severely inactivated by SDS even at lower concentrations and, conversely, the other three surfactants (Triton X-100, Tween 20, and Tween 80) had a stimulatory effect on the activity, especially at a pre-incubating temperature of 40 °C. The enzyme exhibited a good compatibility with several commercial detergents, such as Dr. Formula® and Sugar Bubble®. The evolution results of pyrene fluorescence spectroscopy showed that the enzyme molecules participated in the formation of SDS micelles but did not alter the property of SDS micelles above the critical micelle concentration (CMC). Structural analyses revealed a significant change in the enzyme’s secondary structure in the presence of SDS. Through the use of the intentionally fenthion-contaminated Chinese cabbage leaves as the model experiment, enzyme–Joy® washer solution could remove the pesticide from the contaminated sample more efficiently than detergent alone. Overall, our data promote a better understanding of the links between the esterase activity of His6-tagged BdPTE and surfactants, and they offer valuable information about its potential applications in liquid detergent formulations.
Collapse
|