1
|
Oliveira LA, Sanches MA, Segundo WOPF, Santiago PAL, Lima RQ, Cortez ACA, Souza ÉS, Lima MP, Lima ES, Koolen HHF, Dufossé L, Souza JVB. Exploring colorant production by amazonian filamentous fungi: Stability and applications. J Basic Microbiol 2024; 64:e2300444. [PMID: 38051942 DOI: 10.1002/jobm.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 12/07/2023]
Abstract
The aim of this study was to investigate the production, stability and applicability of colorants produced by filamentous fungi isolated from soil samples from the Amazon. Initially, the isolates were evaluated in a screening for the production of colorants. The influences of cultivation and nutritional conditions on the production of colorants by fungal isolates were investigated. The colorants produced by selected fungal isolates were chemically characterized using the Liquid Chromatography-Mass Spectrometry technique. The antimicrobial and cytotoxic activities, stability evaluation and applicability of the colorants were investigated. As results, we observed that the isolates Penicillium sclerotiorum P3SO224, Clonostachys rosea P2SO329 and Penicillium gravinicasei P3SO332 stood out since they produced the most intense colorants. Compounds produced by Penicillium sclerotiorum P3SO224 and Clonostachys rosea P2SO329 were identified as sclerotiorin and penicillic acid. The colorant fraction (EtOAc) produced by these species has antimicrobial activity, stability at temperature and at different pHs, stability when exposure to light and UV, and when exposed to different concentrations of salts, as well as being nontoxic and having the ability to dye fabrics and be used as a pigment in creams and soap. Considering the results found in this study, it was concluded that fungi from the soil in the Amazon have the potential to produce colorants with applications in the textile and pharmaceutical industries.
Collapse
Affiliation(s)
- Luciana A Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Michele A Sanches
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Walter O P F Segundo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Paulo A L Santiago
- Programa de Pós-graduação em Química, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Rodrigo Q Lima
- Centro Universitário do Norte-UNINORTE, Manaus, Amazonas, Brazil
| | - Ana C A Cortez
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| | - Érica S Souza
- Escola Superior de Tecnologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Maria P Lima
- Departamento de Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | - Hector H F Koolen
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO), ESIROI Agroalimentaire, Université de La Réunion, Saint-Denis, France
| | - João V B Souza
- Laboratório de Micologia, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
3
|
Ayyolath A, Kallingal A, Kundil VT, Suresh AM, Jayadevi Variyar E. Investigating the disease-modifying properties of sclerotiorin in Alzheimer's therapy using acetylcholinesterase inhibition. Chem Biol Drug Des 2023; 102:292-302. [PMID: 37076430 DOI: 10.1111/cbdd.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused due to the damage and loss of neurons in specific brain regions. It is the most common form of dementia observed in older people. The symptoms start with memory loss and gradually cause the inability to speak and do day-to-day activities. The cost of caring for those affected individuals is huge and is probably beyond most developing countries capability. Current pharmacotherapy for AD includes compounds that aim to increase neurotransmitters at nerve endings. This can be achieved by cholinergic neurotransmission through inhibition of the cholinesterase enzyme. The current research aims to find natural substances that can be used as drugs to treat AD. The present work identifies and explains compounds with considerable Acetylcholinesterase (AChE) inhibitory activities. The pigment was extracted from the Penicillium mallochii ARA1 (MT373688.1) strain using ethyl acetate, and the active compound was identified using chromatographic techniques followed by structural confirmation with NMR. AChE inhibition experiments, enzyme kinetics, and molecular dynamics simulation studies were done to explain the pharmacological and pharmacodynamic properties. We identified that the compound sclerotiorin in the pigment has AChE inhibitory activity. The compound is stable and can bind to the enzyme non-competitively. Sclerotiorin obeys all the drug-likeliness parameters and can be developed as a promising drug in treating AD.
Collapse
Affiliation(s)
- Aravind Ayyolath
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Akshay Maniyeri Suresh
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|
4
|
Umesh M, Suresh S, Santosh AS, Prasad S, Chinnathambi A, Al Obaid S, Jhanani GK, Shanmugam S. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. ENVIRONMENTAL RESEARCH 2023; 229:115973. [PMID: 37088318 DOI: 10.1016/j.envres.2023.115973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The present study explores natural pigments as sustainable alternatives to synthetic textile dyes. Due to their therapeutic applications and easy production, fungal pigments have gained attention. However, data on pigment production using solid-state fermentation and optimization is limited. Milk whey was used to grow Talaromyces sp., followed by an evaluation of pigment production in solid and liquid media. Pineapple peels were used as a cost-effective substrate for pigment production, and a one-factor-at-a-time approach was used to enhance pigment production. Pineapple peel-based media produced 0.523 ± 0.231 mg/g of pigment after eight days of incubation. The crude pigment had promising antibacterial and significant antioxidant properties. The extraction fungal pigment's possible use as an eco-friendly textile dye was assessed through fabric dyeing experiments with different mordants. This work contributes to the valorization of agricultural waste and provides insight into using fungal pigments as sustainable alternatives to synthetic textile dyes.
Collapse
Affiliation(s)
- Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India.
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Adhithya Sankar Santosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Samyuktha Prasad
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, 51010, Estonia
| |
Collapse
|
5
|
Lu T, Liu Y, Zhou L, Liao Q, Nie Y, Wang X, Lei X, Hong P, Feng Y, Hu X, Zhang Y. The screening for marine fungal strains with high potential in alkaloids production by in situ colony assay and LC-MS/MS based secondary metabolic profiling. Front Microbiol 2023; 14:1144328. [PMID: 37206330 PMCID: PMC10191116 DOI: 10.3389/fmicb.2023.1144328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Background Alkaloids are the second primary class of secondary metabolites (SMs) from marine organisms, most of which have antioxidant, antitumor, antibacterial, anti-inflammatory, and other activities. However, the SMs obtained by traditional isolation strategies have drawbacks such as highly reduplication and weak bioactivity. Therefore, it is significantly important to establish an efficient strategy for screening strains and mining novel compounds. Methods In this study, we utilized in situ colony assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the strain with high potential in alkaloids production. The strain was identified by genetic marker genes and morphological analysis. The secondary metabolites from the strain were isolated by the combine use of vacuum liquid chromatography (VLC), ODS column chromatography, and Sephadex LH-20. Their structures were elucidated by 1D/2D NMR, HR-ESI-MS, and other spectroscopic technologies. Finally, these compounds bioactivity were assay, including anti-inflammatory and anti-β aggregation. Results Eighteen marine fungi were preliminarily screened for alkaloids production by in situ colony assay using Dragendorff reagent as dye, and nine of them turned orange, which indicated abundant alkaloids. By thin-layer chromatography (TLC), LC-MS/MS, and multiple approaches assisted Feature-Based Molecular Networking (FBMN) analysis of fermentation extracts, a strain ACD-5 (Penicillium mallochii with GenBank accession number OM368350) from sea cucumber gut was selected for its diverse alkaloids profiles especially azaphilones. In bioassays, the crude extracts of ACD-5 in Czapek-dox broth and brown rice medium showed moderate antioxidant, acetylcholinesterase inhibitory, anti-neuroinflammatory, and anti-β aggregation activities. Three chlorinated azaphilone alkaloids, compounds 1-3 (sclerotioramine, isochromophilone VI, and isochromophilone IX, respectively), were isolated from the fermentation products of ACD-5 in brown rice medium guided by bioactivities and mass spectrometry analysis. Compound 1 had shown remarkable anti-neuroinflammatory activity in liposaccharide induced BV-2 cells. Conclusion In summary, in situ colony screening together with LC-MS/MS, multi-approach assisted FBMN can act as an efficient screening method for strains with potential in alkaloids production.
Collapse
Affiliation(s)
- Tiantian Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingnan Liao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yingying Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xingyuan Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoling Lei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Pengzhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yan Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Provincial Ministry Collaborative Innovation Center for Key Technologies of Marine Food Finishing and Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yi Zhang, ,
| |
Collapse
|
6
|
Kallingal A, Ayyolath A, Thachan Kundil V, Maniyeri Suresh A, Muringayil Joseph T, Haponiuk J, Thomas S, Augustine A. Divulging the anti-acetylcholinesterase activity of Colletotrichum lentis strain KU1 extract as sustainable AChE active site inhibitors. Arch Microbiol 2022; 204:713. [DOI: 10.1007/s00203-022-03288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
|
7
|
Kallingal A, Ayyolath A, Thachan Kundil V, Joseph TM, Chandra D N, Haponiuk JT, Thomas S, Variyar E J. Extraction and optimization of Penicillium sclerotiorum strain AK-1 pigment for fabric dyeing. J Basic Microbiol 2021; 61:900-909. [PMID: 34467566 DOI: 10.1002/jobm.202100349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/14/2023]
Abstract
Recently, the demand for fungal pigments has increased due to their several benefits over synthetic dyes. Many species of fungi are known to produce pigments and a large number of fungal strains for pigment production are yet to be extensively investigated. The natural pigment from sustainable natural sources has good economic and industrial value. Many synthetic colorants used in textile and various industries have many harmful effects on the human population and environment. Pigments and coloring agents may be extracted from a wide range of fungal species. These compounds are among the natural compounds having the most significant promise for medicinal, culinary, cosmetics, and textile applications. This study attempts to isolate and optimize the fermentation conditions of Penicillium sclerotiorum strain AK-1 for pigment production. A dark yellow-colored pigment was isolated from the strain with significant extractive value and antioxidant capacity. This study also identifies that the pigment does not have any cytotoxic effect and is multicomponent. The pigment production was optimized for the parameters such as pH, temperature, carbon and nitrogen source. Fabric dyeing experiments showed significant dyeing capacity of the pigment on cotton fabrics. Accordingly, the natural dye isolated from P. sclerotiorum strain AK-1 has a high potential for industrial-scale dyeing of cotton materials.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| | - Tomy M Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Naveen Chandra D
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Jayadevi Variyar E
- Department of Biotechnology and Microbiology, Kannur University, Palayad, Kerala, India
| |
Collapse
|
8
|
Kallingal A, Thachan Kundil V, Ayyolath A, Muringayil Joseph T, Kar Mahapatra D, Haponiuk JT, Variyar EJ. Identification of sustainable trypsin active-site inhibitors from Nigrospora sphaerica strain AVA-1. J Basic Microbiol 2021; 61:709-720. [PMID: 34228389 DOI: 10.1002/jobm.202100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Tomy Muringayil Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|