1
|
Sameem S, Dwivedi V, Kumar V, Dwivedi AR, Pathak P, Singh B, Bhat MA, Verma A. Phyto-Fabrication of Moringa Oleifera Peel-Sourced Silver Nanoparticles: A Promising Approach for Combating Hepatic Cancer by Targeting Proinflammatory Cytokines and Mitigating Cytokine Storms. Chem Biodivers 2024; 21:e202400059. [PMID: 38584309 DOI: 10.1002/cbdv.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Hepatocellular carcinoma (HCC) arises from precancerous nodules, leading to liver damage and inflammation, which triggers the release of proinflammatory cytokines. Dysregulation of these cytokines can escalate into a cytokine storm, causing severe organ damage. Interestingly, Moringa oleifera (M. oleifera) fruit peel, previously discarded as waste, contains an abundance of essential biomolecules and high nutritional value. This study focuses on the eco-friendly synthesis of silver nanoparticles infused with M. oleifera peel extract biomolecules and their impact on regulating proinflammatory cytokines, as well as their potential anticancer effects against Wistar rats. The freshly synthesized nanoformulation underwent comprehensive characterization, followed by antihepatic cancer evaluation using a diethyl nitrosamine-induced model (at a dose of 200 mg kg-1 BW). The study demonstrates a significant reduction in proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, interleukin-1β, and nuclear factor kappa beta (NF-κB). Furthermore, it confirms that the newly biosynthesized silver nanoparticles exhibit additional potential against hepatic cancer due to their capped biomolecules.
Collapse
Affiliation(s)
- Shahnawaz Sameem
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vivek Dwivedi
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ashish R Dwivedi
- Department of Medicinal Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
- Department of Pharmacy, S. N. Medical College, Agra, 282002, India
| | - Mashooq Ahmad Bhat
- Deptartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| |
Collapse
|
2
|
Ram T, Singh AK, Pathak P, Kumar A, Singh H, Grishina M, Novak J, Kumar P. Design, one-pot synthesis, computational and biological evaluation of diaryl benzimidazole derivatives as MEK inhibitors. J Biomol Struct Dyn 2023; 42:11812-11827. [PMID: 37807916 DOI: 10.1080/07391102.2023.2265486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
MEK mutations are more common in various human malignancies, such as pancreatic cancer (70-90%), mock melanoma (50%), liver cancer (20-40%), colorectal cancer (25-35%), melanoma (15-20%), non-small cell lung cancer (10-20%) and basal breast cancer (1-5%). Considering the significance of MEK mutations in diverse cancer types, the rational design of the proposed compounds relies on the structural resemblance to FDA-approved MEK inhibitors like selumetinib and binimetinib. The compound under design features distinct substitutions at the benzimidazole moiety, specifically at positions 2 and 3, akin to the FDA-approved drugs, albeit differing in positions 5 and 6. Subsequent structural refinement was guided by key elements including the DFG motif, hydrophobic pocket and catalytic loop of the MEK protein. A set of 15 diverse diaryl benzimidazole derivatives (S1-S15) were synthesized via a one-pot approach and characterized through spectroscopic techniques, including MASS, IR, 1H NMR and 13C NMR. In vitro anticancer activities of all the synthesized compounds were evaluated against four cancer cell lines, A375, HT -29, A431 and HFF, along with the standard drug trametinib. Molecular docking was performed for all synthesized compounds (S1-15), followed by 950 ns molecular dynamics simulation studies for the promising compounds S1, S5 and S15. The stability of these complexes was assessed by calculating the root-mean-square deviation, solvent accessible surface area and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Based on the biological and computational results, S15 was the most potent compound and S1 and S5 are comparable to the standard drug trametinib.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Prateek Pathak
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus," GITAM (Deemed to be University), India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| | - Maria Grishina
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus," GITAM (Deemed to be University), India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Ghudda, India
| |
Collapse
|
3
|
Otuechere CA, Neupane NP, Adewuyi A, Pathak P, Novak J, Grishina M, Khalilullah H, Jaremko M, Verma A. Green Synthesis of Genistein-Fortified Zinc Ferrite Nanoparticles as a Potent Hepatic Cancer Inhibitor: Validation through Experimental and Computational Studies. Chem Biodivers 2023; 20:e202300719. [PMID: 37312449 DOI: 10.1002/cbdv.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.
Collapse
Affiliation(s)
- Chiagoziem A Otuechere
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, 232101, Ede, Nigeria
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Netra P Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, 232101, Ede, Nigeria
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000, Rijeka, Croatia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| |
Collapse
|
4
|
Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications - A Review. Chem Biodivers 2023; 20:e202201241. [PMID: 37455394 DOI: 10.1002/cbdv.202201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Because of the increasing demand for natural products, the development of nanoformulations containing natural active ingredients requires in-depth knowledge of the substances used, methods of obtaining, and stability profiles to ensure product quality, efficacy, and safety. Considering this, the bibliography of the last five years presented in databases (PubMed and Science Direct) was discussed in this work, discussing the study with medicinal plants to obtain active metabolites with therapeutic properties, as well as the different nano-systems responsible for carrying these molecules. Due to the wealth of biodiversity found in the world, many species are submitted to the extraction process for several purposes. However, identifying, classifying, and quantifying the constituents of herbal matrices are crucial steps to verify their therapeutic potential. In addition, knowing the techniques of production and elaboration of nanotechnology products allows the optimization of the incorporation of herbal extracts as an innovation target. For studies to be successful, it is necessary to exhaust experimental results that guarantee the efficacy, safety, and quality of natural nanosystems, with the objective of obtaining reliable answers in nanotechnology therapy.
Collapse
Affiliation(s)
- Lucas Oliveira da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Mandal AK, Paudel S, Pandey A, Yadav P, Pathak P, Grishina M, Jaremko M, Emwas AH, Khalilullah H, Verma A. Guava Leaf Essential Oil as a Potent Antioxidant and Anticancer Agent: Validated through Experimental and Computational Study. Antioxidants (Basel) 2022; 11:2204. [PMID: 36358576 PMCID: PMC9687059 DOI: 10.3390/antiox11112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
UNLABELLED Several drugs now employed in cancer therapy were discovered as a result of anticancer drug research based on natural products. Here, we reported the in vitro antioxidant and anticancer activity followed by in silico anticancer and estrogen-like activity of Psidium guajava L. essential oil against ER-α receptors which lead to potential inhibitory action against breast cancer pathways. METHODS The bioactive compounds in guava essential oil were screened using gas chromatography-mass spectrometry (GC-MS). Similarly, the antioxidant properties of the extracted oil were evaluated using 2,2-Diphenyl-1-picrylhydrazyl scavenging assay. Furthermore, the in vitro anticancer activity of guava oil was observed through the MTT assay and an in silico molecular docking experiment was also carried out to ensure that they fit into the estrogen receptors (ERs) and possess anticancer potential. RESULTS The GC-MS profile of the essential oil revealed the presence of 17 chemicals, with limonene (51.3%), eucalyptol (21.3%), caryophyllene oxide (6.2%), caryophyllene (5.6%), and nerolidol (4.5%) occupying more than one-third of the chromatographic spectrum zone. Guava leaves' essential oil (EO) inhibited DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and exhibited concentration dependent free radical scavenging activity, acting as a potent antioxidant with an IC50 value of 29.3 ± 0.67 µg/mL. The outcome of the MTT assay showed that the extracted guava oil had nearly the same efficacy against breast and liver cancer cells at a low concentration (1 µg/mL), giving 98.3 ± 0.3% and 98.5 ± 0.4% cell viability against HepG2 at 1 µg/mL, respectively. When the concentration of essential oil was increased, it showed a small reduction in the percentage of viable cells. While conducting an in silico study of all the screened compounds, the potential for hydroxycaryophyllene, caryophyllene, caryophyllene oxide, humulene, terpineol, and calamenene to inhibit tumor growth was bolstered due to a resemblance to 4-hydroxytamoxifen, thereby implying that these compounds may act as selective estrogen receptor modulators (SERMs). The ADME analysis of the compounds indicated above revealed that they exhibit excellent drug likeness properties and follow the Lipinski rule of five. CONCLUSIONS Consequently, they have a substantial anticancer therapeutic potential and can be used for novel drug discovery in the effort to minimize the global burden of breast cancer.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Samrat Paudel
- Department of Biotechnology, Kathmandu University, Dhulikhel 45200, Nepal
| | - Anisha Pandey
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Department of Biotechnology, National College, Tribhuvan University, Naya Bazar, Kathmandu 44600, Nepal
| | - Parasmani Yadav
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk 454008, Russia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| |
Collapse
|
6
|
Sameem S, Neupane NP, Saleh Ansari SM, Uzzaman Khan MM, Kumar V, Pathak P, Grishina M, Verma A. Phyto-fabrication of silver nanoparticles from Ziziphus mauritiana against hepatic carcinoma via modulation of Rho family-alpha serine/threonine protein kinase. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Green synthesis of silver nanoformulation of Scindapsus officinalis as potent anticancer and predicted anticovid alternative: Exploration via experimental and computational methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|