1
|
Singh PP, Urvashi, Sangeetha KS, Sharma U, Reddy SGE. Insecticidal Activities and Mechanism of Action of Steroidal Saponins from Trillium govanianum Wall. ex D. Don Against Plutella xylostella (L.) and Aphis craccivora Koch. NEOTROPICAL ENTOMOLOGY 2025; 54:67. [PMID: 40377771 DOI: 10.1007/s13744-025-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Diamondback moth, Plutella xylostella (L.), is a major pest of cruciferous crops, whereas Aphis craccivora is a major sucking pest of leguminous crops. Indiscriminate use of synthetic insecticides for the control of insect pests leads to insecticide resistance, harmful to natural enemies of pests, pollinators, the environment, and consumers' health. Therefore, it is necessary to screen/identify alternate strategies to control the target pests. Steroidal saponins, a group of specialized amphiphilic metabolites, are known for their various biological properties. There are a few reports on insecticidal activities of steroidal saponins. In the present study, insecticidal activities of nine diverse steroidal saponins isolated from Trillium govanianum were evaluated against Plutella xylostella and Aphis craccivora. Among the molecules, govanoside E (3) was found more effective against Plutella xylostella (LD50 = 0.91 µL/insect) after 96 h of treatment followed by govanosides D and F (1.44 and 1.56 µL/insect, respectively). Similarly, govanoside E was also found effective against Aphis craccivora (LD50 = 1.04 µL/insect) followed by dehydroxy-diosgenin and pennogenin-triglycoside (1.19 and 1.36 µL/insect, respectively). Furthermore, govanoside E (3) showed promising repellency (RC50 = 1043.20 µL/L) against Plutella xylostella. The molecules also showed a dose-dependent relationship with inhibitory effects on the reproduction of Aphis craccivora. In vitro enzyme inhibition/mechanism study confirmed that govanoside E (3) inhibited glutathione-S-transferase (GST) and carboxylesterase (CES1) in test insects. The present study suggested the potential utilization of steroidal saponins for the control of target pests based on field bio-efficacy results.
Collapse
Affiliation(s)
- Prithvi Pal Singh
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Urvashi
- Entomology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - K S Sangeetha
- Entomology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - S G Eswara Reddy
- Entomology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Singh PP, Anmol, Suresh PS, Sharma U. NADES extraction, UHPLC-ELSD-based quantification, and network pharmacology-guided target identification of fourteen specialised metabolites from Trillium govanianum Wall. ex D.Don. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1265-1277. [PMID: 38659229 DOI: 10.1002/pca.3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 μg), limit of quantification (LOQ) (7.92-29.7 μg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22β-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.
Collapse
Affiliation(s)
- Prithvi Pal Singh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anmol
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Patil Shivprasad Suresh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Singh PP, Sharma U. Network pharmacology-guided therapeutic exploration of a new trihydroxy fatty ester isolated from rhizomes of Trillium govanianum. Nat Prod Res 2024:1-5. [PMID: 38979980 DOI: 10.1080/14786419.2024.2375318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
One new previously undescribed trihydroxy fatty ester (1) and three known aliphatic alkenes (2-4) have been isolated from the rhizomes of Trillium govanianum Wall. ex D.Don. The structures of isolated molecules were elucidated using extensive spectroscopic techniques including NMR, HR-ESI-MS, and FT-IR, respectively. This is the first report on the isolation of compounds 3 and 4 from the Trillium genus. Moreover, through a network pharmacology approach, the therapeutic potential of the isolated molecules was investigated. This analysis revealed that these fatty alkenes can be utilised for managing health conditions such as pneumonitis, inflammatory pain, and endothelial dysfunction.
Collapse
Affiliation(s)
- Prithvi Pal Singh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Silva RMGD, Kacew S, Granero FO. Saponins: A class of bioactive natural products with wide applications in human health. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:185-233. [DOI: 10.1016/b978-0-443-15756-1.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Tadege G, Sirak B, Abebe D, Nureye D. Antinociceptive and antiinflammatory activities of crude leave extract and solvent fractions of Commelina latifolia Hochst. ex C.B.Clarke (Commelinaceae) leaves in murine model. Front Pharmacol 2023; 14:1284087. [PMID: 38130405 PMCID: PMC10733449 DOI: 10.3389/fphar.2023.1284087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Ethnopharmacological relevance: In the past, Ethiopian traditional medicine employed the leaves of the native Commelina latifolia Hochst. ex C.B. Clarke plant to treat wounds, pain, and malaria. Aim of the study: The crude extract and solvent fractions of C. latifolia Hochst. ex C.B. Clarke leaves were examined in the present investigation to determine their ability to have an antiinflammatory effect and provide an antinociceptive effect in animal models. Materials and methods: The leaves of C. latifolia were extracted with 80% methanol, and the CL crude extract was further fractionated with chloroform, pure methanol, and distilled water. The carrageenan-induced paw edema model was used to test the extracts' ability to reduce inflammation. The hotplate model and the acetic acid-induced writhing test on rodents were used to test the extracts' potential antinociceptive effect to reduce pain. Results: Inflammation was decreased by 64.59% with CL crude extract (400 mg/kg); 56.34% (400 mg/kg) of methanol fraction, 64.59% of aqueous fraction (400 mg/kg), and 38.27% of chloroform fraction in the carrageenan-induced inflammatory model. All extracts demonstrated a considerable lengthening of the nociception reaction time in the hot plate test, with a maximum antinociceptive effect of 78.98% (crude extract) and 71.65% (solvent fractions). At a dosage of 400 mg/kg, the natural C. latifolia crude extract and aqueous fraction demonstrated considerable antinociceptive effects against acetylsalicylic acid (ASA) during the writhing test (48.83% and 45.37than%, respectively). The current findings support Ethiopia's traditional user's assertions that the herb can alleviate inflammation and pain.
Collapse
Affiliation(s)
- Getnet Tadege
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Marqos, Ethiopia
| | - Betelhem Sirak
- Department of Pharmacy, College of Medicine Health Sciences, Arbaminch University, Arba Minch, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Marqos, Ethiopia
| | - Dejen Nureye
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
- School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
6
|
Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: in vitro and in silico approaches. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Suresh PS, Thakur KG, Sharma U. Molecular docking and dynamic simulation approach to decipher steroidal sapogenins (genus Trillium) derived agonists for glucocorticoid receptor. J Biomol Struct Dyn 2023; 41:55-66. [PMID: 34825633 DOI: 10.1080/07391102.2021.2003864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Steroidal sapogenins (SS) are structural analogues of steroidal drugs, which are frequently used for the treatment of several diseases including reproductive, malignancies, neurological, and inflammation-related diseases. The glucocorticoid receptor (GR) is a nuclear receptor that regulates development, metabolism, and inflammation, in response to steroidal ligands. Therefore, GR is considered as a potential therapeutic target for steroidal agents to the treatment of inflammation-related diseases. We hypothesized that SS may act as an agonist for GR due to structural similarity with corticosteroids. In this study, we carried out in silico screening of various SS from the genus Trillium to check their potential as an agonist for GR. Our data suggest that out of 42 SS, only 7 molecules have interacted with GR. However, molecular mechanics with generalized Born and surface area (MM-GBSA) analysis revealed that only two SS (SS 38 and SS 39) molecules bind favorably to GR. Among these, SS 38 (docking score: -9.722 Kcal/mol and MM-GBSA ΔGbind: -50.192 Kcal/mol) and SS 39 (docking score: -11.20 Kcal/mol and MM-GBSA ΔGbind: -58.937 Kcal/mol) have best docking and MM-GBSA scores. Molecular dynamics (MD) simulation studies of SS 38, SS 39, and dexamethasone-GR complex revealed that both SS shows hydrogen bonding and hydrophobic interaction with GR over the 120 ns simulation with mild fluctuations. The current study suggests that SS 38 and SS 39 may be further explored as a potential agonist to treat several disease conditions mediated by GR.
Collapse
Affiliation(s)
- Patil Shivprasad Suresh
- Chemical Technology Division, CSIR-IHBT, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Krishan Gopal Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India.,Structural Biology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| |
Collapse
|
8
|
Lactic acid-based deep eutectic solvent: An efficient green media for the selective extraction of steroidal saponins from Trillium govanianum. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|