1
|
Quejada LF, Hernandez AX, Chitiva LC, Bravo-Chaucanés CP, Vargas-Casanova Y, Faria RX, Costa GM, Parra-Giraldo CM. Unmasking the Antifungal Activity of Anacardium occidentale Leaf Extract against Candida albicans. J Fungi (Basel) 2024; 10:464. [PMID: 39057348 PMCID: PMC11277670 DOI: 10.3390/jof10070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal disease causes high morbidity and mortality among immunocompromised patients. Resistance to conventional antifungal drugs and the toxicity associated with high doses highlight the need for effective antifungal therapies. In this study, the antifungal potential of the ethanolic extract of Anacardium occidentale (Cashew Leaf) leaves were evaluated against Candida albicans and C. auris. The antifungal activity was tested by the broth microdilution method and growth kinetic test. To further explore its antifungal action mode, spectrofluorophotometry, confocal microscopy and scanning and transmission electron microscopy were performed. Additionally, heterozygous knockout strains associated with resistance to oxidative stress were included in the study. We found that A. occidentale could inhibit the proliferation and growth of C. albicans at concentrations of 62.5 and 125 μg/mL. The doubling time was also drastically affected, going from 2.8 h to 22.5 h, which was also observed in C. auris. The extract induced the accumulation of intracellular reactive oxygen species (ROS), resulting in endoplasmic reticulum stress and mitochondrial dysfunction, while it did not show cytotoxicity or hemolytic activity at the concentrations evaluated. Our work preliminarily elucidated the potential mechanisms of A. occidentale against C. albicans on a cellular level, and might provide a promising option for the design of a new treatment for invasive candidiasis.
Collapse
Affiliation(s)
- Luis F. Quejada
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Andrea X. Hernandez
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Luis C. Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia P. Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
| | - Robson X. Faria
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro 21045-900, RJ, Brazil;
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (A.X.H.); (L.C.C.); (G.M.C.)
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, 110231 Bogotá, Colombia; (L.F.Q.); (C.P.B.-C.); (Y.V.-C.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Caja S/N, 28040 Madrid, Spain
| |
Collapse
|
2
|
Silva VBD, Almeida-Bezerra JW, Novais MHG, Farias NS, Coelho JJ, Ribeiro PRV, Canuto KM, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117506. [PMID: 38012976 DOI: 10.1016/j.jep.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa Gomes is a fruit and medicinal species used for treating infectious diseases of the genitourinary system. However, its mechanism of action against microbes is still not fully understood. Infections in the genitourinary system caused by Candida spp. are associated with its fungal resistance and pathogenicity. New plant-derived compounds are an alternative to fight these Candida infections. AIM OF THE STUDY The objective of this study was to evaluate the anti-Candida effects of extracts of the stem bark of H. speciosa. This research investigated the chemical composition of sulfuric ether (EEHS) and methanolic (MEHS) extracts, their drug-modifying action on fluconazole, and their anti-virulence action on the morphological transition of Candida species. MATERIALS AND METHODS The extracts (EEHS and MEHS) of the stem bark of H. speciosa were chemically characterized via qualitative phytochemical screening and by liquid chromatography coupled with mass spectrometry (UPLC-MS-ESI-QTOF). The extracts were evaluated regarding their antifungal effects and fluconazole-modifying activity against Candida albicans, Candida krusei, and Candida tropicalis using the broth microdilution method. Additionally, the study evaluated the inhibition of fungal virulence in Candida species through morphological transition assays. RESULTS The phytochemical screening revealed the presence of anthocyanidins, anthocyanins, aurones, catechins, chalcones, flavones, flavonols, flavanones, leucoanthocyanidins, tannins (condensed and pyrogallic), and xanthones in both extracts of the stem bark of H. speciosa. The UPLC-MS-ESI-QTOF analysis identified the same compounds in both extracts, predominating phenolic compounds. Some compounds were first time recorded in this species: gluconic acid, cinchonain IIb, cinchonain Ib isomer, and lariciresinol hexoside isomers. Most of the intrinsic antifungal activity was observed for the MEHS against C. krusei (IC50: 58.41 μg/mL). At subinhibitory concentrations (MC/8), the EEHS enhanced the action of fluconazole against all Candida strains. The MEHS exhibited greater efficacy than fluconazole inhibiting C. krusei growth. The EEHS completely inhibited hyphae appearance and reduced pseudohyphae formation in C. albicans. CONCLUSION The stem bark of H. speciosa is a rich source of bioactive compounds, especially phenolic. Phenolic compounds can have important roles in fighting infectious diseases of the genitourinary system, such as candidiasis. The extracts of H. speciosa improved the action of the drug fluconazole against Candida species, inhibited hyphae appearance, and reduced pseudohyphae formation. The results of this study can support the development of new therapeutics against resistant strains of Candida.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil
| | - Maria Hellena Garcia Novais
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Naiza Saraiva Farias
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Janerson José Coelho
- Animal Science Department, Universidade Estadual do Maranhão - UEMA, São Luís, Maranhão, Brazil
| | - Paulo Riceli Vasconcelos Ribeiro
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Kirley Marques Canuto
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
3
|
Pham D, Truong D, Tran QH, Ho QT, Nguyen TAD, Nguyen TNH, Nguyen TV, Nguyen TTV, Cao TS, Barrow CJ, Nguyen HC. Fractionation, identification of chemical constituents, and biological properties of cashew ( Anacardium occidentale L.) leaf extracts. Food Sci Nutr 2023; 11:7996-8008. [PMID: 38107119 PMCID: PMC10724627 DOI: 10.1002/fsn3.3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
The current study aimed to identify the chemical constituents and bioactivities of the crude ethanolic extract (CEE) and its fractions (ethyl acetate (EAF), hexane (HEF), and aqueous (AEF)) from leaves of cashew (Anacardium occidentale L.) grown in Vietnam. A total of 31 compounds which belong to alkanes, hydrocarbons, iodine, terpenoids, phenolics, and flavonoids were determined by a gas chromatography-mass spectrometry (GC-MS) analysis, with bis(2-ethylhexyl) phthalate being the most prevailing compound. The highest total phenolic and flavonoid contents were obtained in the EAF, followed by HEF, CEE, and AQF. All samples showed promising in vitro antibacterial activity, enzyme inhibition, and anticancer activity. Among the samples tested, the EAF exhibited the highest enzyme inhibition activity against α-amylase and α-glucosidase (IC50 values of 51.24 μg/mL and 99.29 μg/mL, respectively), cytotoxicity activity against HeLa cells (IC50 value of 79.49 μg/mL), and antibacterial activity against Bacillus subtilis and Escherichia coli with MIC values of 5 mg/mL and 2.5 mg/mL, respectively. These findings suggest that the leaves of A. occidentale cultivated in Vietnam are a promising source of bioactive components and that EAF is a promising bioactive material warranting further pharmaceutical investigation.
Collapse
Affiliation(s)
- Dinh‐Chuong Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Quang Huy Tran
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Quang Tien Ho
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | | | | | - Thanh Vinh Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thi Thao Vy Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Tan Sang Cao
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Colin J. Barrow
- Centre for Sustainable BioproductsDeakin UniversityGeelongVictoriaAustralia
| | - Hoang Chinh Nguyen
- Centre for Sustainable BioproductsDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
4
|
Collagenase and Tyrosinase Inhibitory Activities and Stability of Facial Cream Formulation Containing Cashew Leaf Extract. COSMETICS 2023. [DOI: 10.3390/cosmetics10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cashew tree (Anacardium occidentale L.) is a tropical plant found widely in many Southeast Asian countries, including Thailand, and contains bioactive phenolic compounds with antioxidant activity. The natural antioxidants such as collagenase and tyrosinase inhibitors found in medicinal plants are promising agents in cosmetic products. This study evaluated the inhibitory activities of the collagenase and tyrosinase from cashew leaf extracts by developing and evaluating the stability of facial cream formulations. The ethanol (DEN), ethyl acetate (DEA) and distilled water (DDW) crude extracts of cashew leaves were investigated for their bioactive compound efficacy. The DDW extract had the highest yield (24.97%). All the extracts were investigated for their antioxidant activities. The DEN extract showed the highest DPPH radical-scavenging ability, ferric-reducing power and flavonoid compounds, which were 152.04 ± 2.40 mg gallic acid/g extract, 37.90 ± 1.07 mg gallic acid/g dry weight and 7.63 ± 0.07 mg quercetin/g dry weight, respectively. The DDW extract exhibited the highest potent activity, which was 111.00 ± 0.78 mg gallic acid/g dry weight in terms of phenolic content, while the DEN extract showed the highest tyrosinase inhibition at 0.100 mg/mL (46.97 ± 3.34%) and collagenase activity at 40 µg/mL. The results suggested that the ethanolic extracts from cashew leaves showed promise for use in skincare product development. Cosmeceutical formulations for skincare were prepared. The formula mixed with DEN extract and added to whitening and anti-aging skincare cream demonstrated good stability and physical properties.
Collapse
|
5
|
Tarsikah, Widyana ED, Wulandari LP. Effectiveness of Kemangi (Ocimum basilicum) Leaf Methanol Extract against Candida albicans Colonies. JURNAL INFO KESEHATAN 2022. [DOI: 10.31965/infokes.vol20.iss2.870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Candida species, for women are the foremost common cause of parasitic contaminations. Candida species affect contamination in 75% of women and at slightest 6-9% of women involvement repetitive vulvovaginal candidiasis. Candida albicans (CA) accounts for 85-95% of yeast strains separated from the vagina. The treatment which has been administered for candida infections is antifungal drugs such as clotrimazole and fluconazole. When applied topically, synthetic antifungal drugs cause allergic reactions, resistance, and a burning sensation. It is necessary to conduct research on plant-based herbal medicine as an alternative treatment. Kemangi, also recognized as Ocimum Basilicum (OB), is a plant native to Indonesia which has medicinal properties. The objective of this study is to examine how effective OB methanol extract is against CA colonies. The study was performed at Brawijaya University's Microbiology Laboratory in Malang. The experimental laboratories with Posttest Only Control Group Design were employed in this study, with four repetitions of OB concentrations of 15%, 20%, 25%, 30%, and 35% against CA colonies. One-way ANOVA was utilized as the hypothesis test, with a significance level of 0.05. The results demonstrated that OB extract with a concentration of 15% was able to inhibit the growth of CA colonies. In the OB extract with a concentration of 35%, no CA colony growth was revealed. One-way ANOVA test obtained p 0.000 <0.05. Conclusion OB owns adequacy in restraining the development of CA organism with negligible murdering rate at a concentration of 35%. Research required to be performed to identify the antifungal potential of OB extract in vivo.
Collapse
|
6
|
Houël E, Ginouves M, Azas N, Bourreau E, Eparvier V, Hutter S, Knittel-Obrecht A, Jahn-Oyac A, Prévot G, Villa P, Vonthron-Sénécheau C, Odonne G. Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115054. [PMID: 35131338 DOI: 10.1016/j.jep.2022.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology. AIM OF THE STUDY We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities. Our hypothesis is that specific activity against Leishmania parasites is only one factor along other (anti-inflammatory, wound healing, immunomodulating, antimicrobial) activities. MATERIALS AND METHODS The twelve most widespread plant species used against leishmaniasis in Amazonia, according to their cultural and biogeographical importance determined through a wide bibliographical survey (475 use reports), were selected for this study. Plant extracts were prepared to mimic their traditional preparations. Antiparasitic activity was evaluated against promastigotes of reference and clinical New-World strains of Leishmania (L. guyanensis, L. braziliensis and L. amazonensis) and L. amazonensis intracellular amastigotes. We concurrently assessed the extracts immunomodulatory properties on PHA-stimulated human PBMCs and RAW264.7 cells, and on L. guyanensis antigens-stimulated PBMCs obtained from Leishmania-infected patients, as well as antifungal activity and wound healing properties (human keratinocyte migration assay) of the selected extracts. The cytotoxicity of the extracts against various cell lines (HFF1, THP-1, HepG2, PBMCs, RAW264.7 and HaCaT cells) was also considered. The biological activity pattern of the extracts was represented through PCA analysis, and a correlation matrix was calculated. RESULTS Spondias mombin L. bark and Anacardium occidentale L. stem and leaves extracts displayed high anti-promatigotes activity, with IC50 ≤ 32 μg/mL against L. guyanensis promastigotes for S. mombin and IC50 of 67 and 47 μg/mL against L. braziliensis and L. guyanensis promastigotes, respectively, for A. occidentale. In addition to the antiparasitic effect, antifungal activity measured against C. albicans and T. rubrum (MIC in the 16-64 μg/mL range) was observed. However, in the case of Leishmania amastigotes, the most active species were Bixa orellana L. (seeds), Chelonantus alatus (Aubl.) Pulle (leaves), Jacaranda copaia (Aubl.) D. Don. (leaves) and Plantago major L. (leaves) with IC50 < 20 μg/mL and infection rates of 14-25% compared to the control. Concerning immunomodulatory activity, P. major and B. orellana were highlighted as the most potent species for the wider range of cytokines in all tested conditions despite overall contrasting results depending on the model. Most of the species led to moderate to low cytotoxic extracts except for C. alatus, which exhibited strong cytotoxic activity in almost all models. None of the tested extracts displayed wound healing properties. CONCLUSIONS We highlighted pharmacologically active extracts either on the parasite or on associated pathophysiological aspects, thus supporting the hypothesis that antiparasitic activities are not the only biological factor useful for antileishmanial evaluation. This result should however be supplemented by in vivo studies, and attracts once again the attention on the importance of the choice of biological models for an ethnophamacologically consistent study. Moreover, plant cultural importance, ecological status and availability were discussed in relation with biological results, thus contributing to link ethnobotany, medical anthropology and biology.
Collapse
Affiliation(s)
- Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France.
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eliane Bourreau
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306, Cayenne Cedex, French Guiana
| | - Véronique Eparvier
- CNRS - Institut de Chimie des Substances Naturelles, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Adeline Knittel-Obrecht
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Arnaud Jahn-Oyac
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, 97300, Cayenne, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Pascal Villa
- Plate-forme de Chimie Biologique Intégrative de Strasbourg UAR 3286 CNRS-Université de Strasbourg, Institut du Médicament de Strasbourg, ESBS Pôle API, Bld Sébastien Brant, 67412, Illkirch Cedex, France
| | - Catherine Vonthron-Sénécheau
- Laboratoire d'Innovation Thérapeutique UMR 7200 CNRS - Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Guillaume Odonne
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), CNRS, Université de Guyane, IFREMER, 97300, Cayenne, French Guiana
| |
Collapse
|