1
|
Song L, Chen W, Lu X, Liu Z, Rao Q, Xiao W, Zhan X, Yang S, Gao F, Zhang Q. Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid. ACS APPLIED BIO MATERIALS 2025; 8:1583-1593. [PMID: 39869782 DOI: 10.1021/acsabm.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated. The obtained particles possessed a narrow particle size distribution and good sphericity with a diameter of 878 nm, and their growth process was consistent with the La-Mer growth mechanism. Furthermore, MSNs were modified with amino acids and loaded with rosmarinic acid (RosA), accompanied by the "outer packaging" of pectin to obtain RosA@MSNs-Pec. RosA was added at 200, 150, and 100 mg within 72 h, with a drug loading of 193, 175.5, and 156 mg/g and an encapsulation rate of 19.3, 17.6, and 15.6, respectively. Interestingly, RosA@MSNs-Pec demonstrated the dual pH and pectinase response property, and its release curve conformed to the Higuchi model, indicating that its drug-controlled release was based on Fick's law.
Collapse
Affiliation(s)
- Lina Song
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Wenxian Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Xinbo Lu
- Zhejiang China Tobacco Industry Co., Ltd, Hangzhou310027, China
| | - Ziqiang Liu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Qingqing Rao
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Weiqiang Xiao
- Zhejiang China Tobacco Industry Co., Ltd, Hangzhou310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Shengxiang Yang
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| |
Collapse
|
2
|
Yüksel E, Kort R, Voragen AGJ. Structure and degradation dynamics of dietary pectin. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39681562 DOI: 10.1080/10408398.2024.2437573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
- Keep Food Simple, Driebergen, The Netherlands
| |
Collapse
|
3
|
Ahmed J, Goyal A. One-pot biocatalysis of potato rhamnogalacturonan and the role of its deacetylation in efficient inhibition of colon cancer cells and hydrogel mediated colon-targeted drug delivery. Int J Biol Macromol 2024; 281:136319. [PMID: 39370079 DOI: 10.1016/j.ijbiomac.2024.136319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Deacetylation of potato rhamnogalacturonan (PRG) by rhamnogalacturonan acetyl esterase (CtPae12B) was explored for enhanced hydrolysis of PRG by rhamnogalacturonan lyase (CtRGLf) and the effects of deacetylated PRG were studied in enhancing inhibition of colon-cancer cells and formation of colon-targeting drug delivery material. Pre-treatment of PRG with CtPae12B resulted in increased relative activity of CtRGLf. CtPae12B removed acetyl groups from both O-2 and O-3 positions of D-galactopyranosyluronic acid residues of PRG, resulting in 98 % deacetylation. PRG displayed 21.9 % degree of acetylation and 7.7 % degree of methylation. TLC and ESI-MS analysis of CtRGLf hydrolysed PRG showed unsaturated RG di-saccharide as the smallest product, with m/z 322. Deacetylated PRG-oligosaccharides displayed higher, 50 % inhibition of colon-cancer HCT-116 cells (with shrunken and globular morphology) than 35 % inhibition by acetylated PRG-oligosaccharides. FESEM and BET analysis of CtPae12B-treated PRG showed porous structure and significantly higher total surface area and pore volume than non-enzyme treated PRG. Higher drug entrapment efficiency and lower drug release rate of CtPae12B-treated PRG hydrogel (0.0033 min-1 at pH 1.2 and 0.009 min-1 at pH 7.4), than non-enzyme treated PRG hydrogel, (0.0057 min-1 at pH 1.2 and 0.02 min-1 at pH 7.4), showed it to be a potential biomaterial for sustainable colon-targeted drug delivery.
Collapse
Affiliation(s)
- Jebin Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
5
|
Fang K, Ma J, Wang X, Xu Z, Zhang Z, Li P, Wang R, Wang J, Sun C, Dong Z. Flow-cytometric cell sorting coupled with UV mutagenesis for improving pectin lyase expression. Front Bioeng Biotechnol 2023; 11:1251342. [PMID: 37720319 PMCID: PMC10502208 DOI: 10.3389/fbioe.2023.1251342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Alkaline pectin lyase is an important enzyme with a wide range of applications in industrial production, It has been widely used in many important fields such as fruit juice processing and extraction, the dyeing and processing of cotton and linen textiles, degumming plant fibers, environmental industrial wastewater treatment, and pulp and paper production. PGLA-rep4 was previously generated as a modified alkaline pectin lyase with high specific activity at pH 11.0°C and 70°C. However, the pre-constructed high-activity pectin lyase expression strains are still difficult to apply in industrial production due to their limited enzymatic activity. We hope to solve these problems by combining modern breeding techniques with high-throughput equipment to rapidly screen alkaline pectin lyase with higher enzymatic activity and lower cost. Methods: We fused the genes encoding PGLA-rep4 and fluorescent protein egfp using a flexible linker peptide and ligated them into a temperature-sensitive plasmid, pKD46. The constructed screening plasmid pKD46-PGLA-rep4-egfp was then transformed into an expression host and screened via flow-cytometric cell sorting coupled with UV mutagenesis. Results: Following mutagenesis, primary screening, and secondary screening, the high-expression strain, named Escherichia coli BL21/1G3, was obtained. The screening plasmid pKD46-PGLA-rep4-egfp was eliminated, and the original expression plasmid pET28a-PGLA-rep4 was then retransformed into the mutant strains. After induction and fermentation, pectin lyase activity in E. coli BL21/1G3 was significantly increased (1.37-fold relative to that in the parental E. coli BL21/PGLA-rep4 strain, p < 0.001), and the highest activity was 230, 240 U/mL at 144 h. Genome sequencing revealed that genes encoding ribonuclease E (RNase E) and diadenosine tetraphosphatase (ApaH) of E. coli BL21/1G3 were mutated compared to the sequence in the original E. coli BL21 (DE3) strain, which could be associated with increased enzyme expression. Discussion: Our work provides an effective method for the construction of strains expressing pectin lyase at high levels.
Collapse
Affiliation(s)
- Ke Fang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jun Ma
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Xinyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziting Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziyang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziyang Dong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
6
|
Wang J, Liu Z, Li X, Liu G, Zhao J. Elucidating structure of pectin in ramie fiber to customize enzyme cocktail for high-efficiency enzymatic degumming. Carbohydr Polym 2023; 314:120954. [PMID: 37173048 DOI: 10.1016/j.carbpol.2023.120954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Pectin is one of the main components of bast fiber including ramie fiber, and must be removed before use. Enzymatic degumming is the preferred process as it is an environment-friendly, simple and controllable process for ramie degumming. However, an important problem limiting wide application of this process is the high cost due to the low efficiency of enzymatic degumming. In this study, pectin samples were extracted from raw ramie fiber and degummed ramie fiber, respectively, and their structures were characterized and compared to allow tailoring of an enzyme cocktail for degrading the pectin. It was elucidated that pectin from ramie fiber is composed of low esterified homogalacturonan (HG) and low branched rhamnogalacturonan I (RG-I), and the ratio of HG/RG-I is 1.72:1. Based on the pectin structure, potential enzymes to be used for enzymatic degumming of ramie fiber were proposed and an enzyme cocktail was customized. Degumming experiments confirmed that the customized enzyme cocktail can effectively remove pectin from ramie fiber. To our knowledge, this is the first time the structural characteristics of pectin in ramie fiber have been clarified, and it also provides an example of tailoring a specific enzyme system to achieve high-efficiency degumming for biomass containing pectin.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Zhaoxi Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China.
| |
Collapse
|
7
|
Li P, Wei X, Wang Y, Liu H, Xu Y, Zhang Z, Li J, Wang J, Guo C, Sui S, Wang J, Wang R. Improvement of optimum pH and specific activity of pectate lyase from Bacillus RN.1 using loop replacement. Front Bioeng Biotechnol 2023; 11:1242123. [PMID: 37469444 PMCID: PMC10352616 DOI: 10.3389/fbioe.2023.1242123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Alkaline pectate lyase plays an important role in papermaking, biological refining and wastewater treatment, but its industrial applications are largely limited owing to its low activity and poor alkali resistance. Methods: The alkaline pectate lyase BspPel from Bacillus RN.1 was heterologously expressed in Escherichia coli BL21 (DE3) and its activity and alkali resistance were improved by loop replacement. Simultaneously, the effect of R260 on enzyme alkaline tolerance was also explored. Results: Recombinant pectate lyase (BspPel-th) showed the highest activity at 60°C and pH 11.0, and showed significant stability over a wide pH range (3.0-11.0). The specific enzyme activity after purification was 139.4 U/mg, which was 4.4 times higher than that of the wild-type enzyme. BspPel-th has good affinity for apple pectin, since the V max and K m were 29 μmol/min. mL and 0.46 mol/L, respectively. Molecular dynamics simulation results showed that the flexibility of the loop region of BspPel-th was improved. Conclusion: The modified BspPel-th has considerable potential for industrial applications with high pH processes.
Collapse
Affiliation(s)
- Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Xiaofeng Wei
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yun Wang
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hui Liu
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yanpeng Xu
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziyang Zhang
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junlin Li
- Zhucheng Dongxiao Biotechnology Co. Ltd., Zhucheng, Shandong, China
| | - Jianbin Wang
- Zhucheng Dongxiao Biotechnology Co. Ltd., Zhucheng, Shandong, China
| | - Chuanzhuang Guo
- Zhucheng Dongxiao Biotechnology Co. Ltd., Zhucheng, Shandong, China
| | - Songsen Sui
- Zhucheng Dongxiao Biotechnology Co. Ltd., Zhucheng, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
8
|
Ahmed J, Kumar K, Goyal A. A thermotolerant and pH stable rhamnogalacturonan acetylesterase (CtPae12B), a family 12 carbohydrate esterase from Clostridium thermocellum with broad substrate specificity. Int J Biol Macromol 2023; 226:1560-1569. [PMID: 36455821 DOI: 10.1016/j.ijbiomac.2022.11.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The gene encoding rhamnogalacturonan acetylesterase, CtPae12B from Clostridium thermocellum was cloned, expressed, purified and biochemically characterized. Purified CtPae12B was soluble and exhibited homogenous single band. Phylogenetically it was most closely related to an RGAE, YesT from B. subtilis. CtPae12B production was maximum with LB medium. CtPae12B showed optimal temperature, 65 °C and thermostability with half-life, 5.1 h at 80 °C. CtPae12B was alkaliphilic with optimal pH, 8.0, while it displayed stability at both acidic and alkaline pH ranges. Inhibition of CtPae12B activity by PMSF showed the importance of nucleophilic serine in the catalytic triad. The metal ions, chemical or chelating agents used, did not enhance CtPae12B activity, which was also corroborated by protein melting study. The enzymatic activity of CtPae12B remained unaffected by 5 M urea. CtPae12B showed broad substrate specificity as it displayed activity against a range of synthetic substrates showing highest Vmax, 770 U/mg and Km, 1.2 mM with β-D-gluco pentaacetate. CtPae12B could deacetylate both pectic and xylan substrates showing highest Vmax, 770 U/mg and Km, 13.4 mg/mL with potato rhamnogalacturonan and Vmax, 105 U/mg and Km, 7.1 mg/mL with acetylated birchwood xylan. The thermostability, pH stability and broad substrate specificity of CtPae12B makes it a versatile enzyme for industrial applications.
Collapse
Affiliation(s)
- Jebin Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
The structure-function relationships of pectins separated from three citrus parts: Flavedo, albedo, and pomace. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Reginatto C, Posso dos Santos G, Costa Ramos K, Borges Folle A, Campos de Souza B, Meneghel L, Carra S, Polidoro TA, Moura da Silveira M, Valduga E, Malvessi E. Inoculation conditions improved the pectinase productivity in Aspergillus niger LB-02-SF solid-state cultivation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|