1
|
Ahmed MM, Mukheed M, Tariq T, Hasan M, Shaaban M, Mustafa G, Hatami M. Physio-biochemical insights into Arsenic stress mitigation regulated by Selenium nanoparticles in Gossypium hirsutum L. BMC PLANT BIOLOGY 2025; 25:482. [PMID: 40240948 PMCID: PMC12001592 DOI: 10.1186/s12870-025-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Arsenic is a nonessential toxic metalloid hampering the growth and development of plants. The cotton (Gossypium hirsutum) is of great economic importance in the textile industry as well as in the production of edible oil. In developing countries, especially Pakistan, the export of cotton has a distinct position. However, there has been a significant decline in cotton production over the past few years due to climate change, heavy metals induction and biotic stresses. A notable decrease in cotton growth and product is observed in response to arsenic stress. Selenium nanoparticles (Se NPS) were prepared by green chemistry approach and characterized by UV-Vis, FTIR, and XRD to mitigate the heavy metals induced toxicity in cotton seedling. Results shows that arsenic toxicity causes a drastic decrease in photosynthesis, phenolics, proteins, growth of seedlings, relative water content, and overall plant biomass. However, these physio-biochemical attributes were upregulated by applications of Se NPs. Moreover, As stress causes severe oxidative damage by overproduction of MDA, H2O2 and reactive oxygen species (ROS). The supplementation of SeNPs positively regulate the As stress in cotton seedlings by altering important antioxidant enzymes involved in ROS detoxification such as SOD, POD, and CAT. Se NPs ameliorate the toxicity by increasing activities of enzymatic and non-enzymatic antioxidants. The accumulation of As in roots alter the architecture of roots including reduced branching of roots. Current results suggest that the applications of selenium nanoparticles especially 20 mg/L concentration confidently alleviate the As induced toxicity in cotton seedlings.
Collapse
Affiliation(s)
- Muhammad Mahmood Ahmed
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Mukheed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tuba Tariq
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
2
|
Xu Z, Zhang T, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Research Progress and Prospects of Nanozymes in Alleviating Abiotic Stress of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8694-8714. [PMID: 39936319 DOI: 10.1021/acs.jafc.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The continuous destruction of the global ecological environment has led to increased natural disasters and adverse weather, severely affecting crop yields and quality, particularly due to abiotic stress. Nanase, a novel artificial enzyme, simulates various enzyme activities, is renewable, and shows significant potential in promoting crop growth and mitigating abiotic stress. This study reviews the classification of nanoenzymes into carbon-based, metal-based, metal oxide-based, and others based on synthesis materials. The catalytic mechanisms of these nanoenzymes are discussed, encompassing activities, such as oxidases, peroxidases, catalases, and superoxide dismutases. The catalytic mechanisms of nanoenzymes in alleviating salt, drought, high-temperature, low-temperature, heavy metal, and other abiotic stresses in crops are also highlighted. Furthermore, the challenges faced by nanoenzymes are discussed, especially in sustainable agricultural development. This review provides insights into applying nanoenzymes in sustainable agriculture and offers theoretical guidance for mitigating abiotic stress in crops.
Collapse
Affiliation(s)
- Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Gatasheh MK, Shah AA, Noreen Z, Usman S, Shaffique S. FeONPs alleviate cadmium toxicity in Solanum melongena through improved morpho-anatomical and physiological attributes, along with oxidative stress and antioxidant defense regulations. BMC PLANT BIOLOGY 2024; 24:742. [PMID: 39095745 PMCID: PMC11297600 DOI: 10.1186/s12870-024-05464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Shifa Shaffique
- College of Agriculture & Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, 41566, Daegu, South Korea
| |
Collapse
|
5
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
6
|
Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, Bari A, Munir I. Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement. Sci Rep 2024; 14:12368. [PMID: 38811671 PMCID: PMC11137158 DOI: 10.1038/s41598-024-62907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.
Collapse
Affiliation(s)
- Sidra Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Nayab Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
7
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Pudake RN, Pallavi. Novel application of bio-based nanomaterials for the alleviation of abiotic stress in crop plants. NANOTECHNOLOGY FOR ABIOTIC STRESS TOLERANCE AND MANAGEMENT IN CROP PLANTS 2024:181-201. [DOI: 10.1016/b978-0-443-18500-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Zain M, Ma H, Ur Rahman S, Nuruzzaman M, Chaudhary S, Azeem I, Mehmood F, Duan A, Sun C. Nanotechnology in precision agriculture: Advancing towards sustainable crop production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108244. [PMID: 38071802 DOI: 10.1016/j.plaphy.2023.108244] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024]
Abstract
Nanotechnology offers many potential solutions for sustainable agroecosystem, including improvement in nutrient use efficiency, efficacy of pest management, and minimizing the adverse environmental effects of agricultural production. Herein, we first highlighted the integrated application of nanotechnology and precision agriculture for sustainable productivity. Application of nanoparticle mediated material and advanced biosensors in precision agriculture is only possible by nanochips or nanosensors. Nanosensors offers the measurement of various stresses, soil quality parameters and detection of heavy metals along with the enhanced data collection, enabling precise decision-making and resource management in agricultural systems. Nanoencapsulation of conventional chemical fertilizers (known as nanofertilizers), and pesticides (known as nanopesticides) helps in sustained and slow release of chemicals to soils and results in precise dosage to plants. Further, nano-based disease detection kits are popular tools for early and speedy detection of viral diseases. Many other innovative approaches including biosynthesized nanoparticles have been evaluated and proposed at various scales, but in fact there are some barriers for practical application of nanotechnology in soil-plant system, including safety and regulatory concerns, efficient delivery at field levels, and consumer acceptance. Finally, we outlined the policy options and actions required for sustainable agricultural productivity, and proposed various research pathways that may help to overcome the upcoming challenges regarding practical implications of nanotechnology.
Collapse
Affiliation(s)
- Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Haijiao Ma
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Md Nuruzzaman
- Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Faisal Mehmood
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China; Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Aiwang Duan
- Key Laboratory of Crop Water Use and Regulation, Farmland Irrigation Research Institute, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, 453003, China
| | - Chengming Sun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Sarkar J, Mridha D, Davoodbasha MA, Banerjee J, Chanda S, Ray K, Roychowdhury T, Acharya K, Sarkar J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 2023; 201:5000-5036. [PMID: 36633786 DOI: 10.1007/s12011-022-03549-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Mubarak Ali Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, PIN-600048, India
| | - Jishnu Banerjee
- Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, PIN-700118, India
| | - Sumeddha Chanda
- Department of Botany, Scottish Church College, Kolkata, PIN-700006, India
| | - Kasturi Ray
- Department of Botany, North Campus, University of Delhi, University Road, Delhi, PIN-110007, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India.
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Kolkata, PIN-700084, India.
| |
Collapse
|
11
|
Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122222. [PMID: 37482337 DOI: 10.1016/j.envpol.2023.122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination. In general, the effect of nanoparticles depends on several factors (dose, treatment time, application method, type of nanoparticle and plant). In addition, pH and ionic strength are relevant when applying nanoparticles to the soil. In the case of essential element nanoparticles, Fe nanoparticles show better results in improving nutrient uptake, improving germination, and the possibility of magnetic properties could favor their use in the removal of pollutants. In the case of Cu and Zn nanoparticles, they can be beneficial at low concentrations, while their excess presents toxicity and negatively affects germination. About nanoparticles of non-essential elements, both Ti and Ag nanoparticles can be helpful for nutrient uptake. However, their potential effects depend highly on the crop type, particle size and concentration. Overall, nanotechnology in agriculture is still in its early stages of development, and more research is needed to understand potential environmental and public health impacts.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain; Department of Biology, Microbial Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden.
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Andrés Rodríguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Daniel Arenas-Lago
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
12
|
Gupta K, Saini K, Mathur J. Eco‐Friendly Synthesis of Iron Nanoparticles Using Green Tea Extract: Characterization and Evaluation of Their Catalytic, Anti‐oxidant and Anti‐bacterial Potentials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| |
Collapse
|
13
|
Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|