1
|
Huang D, Rao D, Xi X, Zhang Z, Zhong T. Application of extracellular vesicles proteins in cancer diagnosis. Front Cell Dev Biol 2022; 10:1007360. [PMID: 36407096 PMCID: PMC9666910 DOI: 10.3389/fcell.2022.1007360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Early tumor diagnosis is crucial for its treatment and reduction of death, with effective tumor biomarkers being important tools. Extracellular vesicles (EVs) are small vesicles secreted by cells with various biomolecules, including proteins, nucleic acids, and lipids. They harbor a double membrane structure. Previous studies on EVs in cancer diagnosis and therapy focused on miRNAs. Nonetheless, EVs contain proteins that represent physiological and pathological state of their parental cells. EVs proteins can reflect the pathological state of some diseases, which provides a basis for diagnosis and treatment. This study describes the role of EVs in cancer and summarizes the use of EVs proteins as diagnostic markers in different cancer types. Specifically, we discuss the potential and shortcomings of EVs as tumor biomarkers.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zuxiong Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,*Correspondence: Zuxiong Zhang, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,*Correspondence: Zuxiong Zhang, ; Tianyu Zhong,
| |
Collapse
|
2
|
Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020; 12:cancers12113165. [PMID: 33126572 PMCID: PMC7692229 DOI: 10.3390/cancers12113165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are secreted continuously from different cell types. The composition of EVs, like proteins, nucleic acids and lipids is linked with the cells of origin and they are involved in cell-cell communication. The presence of EVs in the majority of the body fluids makes them attractive to investigate and define their role in physiological and in pathological processes. This review is focused on EVs with dimensions between 30 and 150 nm like exosomes (EEVs). We described the biogenesis of EEVs, methods for isolation and their role in cancer as innovative diagnostic tools and new drug delivery systems. Abstract Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm are continuously secreted from different cells in their extracellular environment. They are able to encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play an essential role in cell‒cell communication, reflecting a novel method of extracellular cross-talk. Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed to unlock their potential roles. Here, we review EVs by discussing their specific characteristics (structure, formation, composition, and isolation methods), focusing on their key role in cell biology. Furthermore, this review will summarize the biomedical applications of EVs, in particular those between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer and as novel drug delivery vehicles.
Collapse
|
3
|
Mitsis T, Pierouli K, Diakou KL, Papakonstantinou E, Bacopoulou F, Chrousos GP, Vlachakis D. Exosomics. ACTA ACUST UNITED AC 2020; 26. [PMID: 32832420 PMCID: PMC7440046 DOI: 10.14806/ej.26.0.934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles have been the focus of a large number of studies in the past five years. Exosomes, a subgroup of extracellular vesicles, are of particularly high interest because they partake in a wide number of biological pathways. Produced by a variety of cells, exosomes have an important role in both physiological and pathological conditions. Exosome cargo heavily defines the vesicles’ unique characteristics, and the cargo with the most intriguing prospects in its’ biomedical applications is the non-coding RNAs. Non-coding RNAs, and specifically microRNAs are implicated in the regulation of many biological processes and have been associated with numerous diseases. Exosomes containing such important cargo can be used as biomarkers, therapeutic biomaterials, or even drug carriers. The potential media use of exosomes seems promising. However, some obstacles should be overcome before their clinical application. Synthetic exosome-like biomolecules may be a solution, but their production is still in their beginning stages. This review provides concise information regarding the current trends in exosome studies.
Collapse
Affiliation(s)
- Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Kalliopi Lo Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Interfering with endolysosomal trafficking enhances release of bioactive exosomes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102014. [DOI: 10.1016/j.nano.2019.102014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023]
|
5
|
Ghafarian F, Pashirzad M, Khazaei M, Rezayi M, Hassanian SM, Ferns GA, Avan A. The clinical impact of exosomes in cardiovascular disorders: From basic science to clinical application. J Cell Physiol 2018; 234:12226-12236. [PMID: 30536994 DOI: 10.1002/jcp.27964] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of death globally; therefore, there is a need for the identification of a valid biomarker that accurately predicts the risk of developing CVD, and novel therapeutic approaches for its treatment. Exosomes are very small extracellular vesicles containing protein, lipid, transcription factors, messenger RNAs, noncoding RNA, and nucleic acid contents that are important players in intercellular communication, and that act via long-range signals or cell-to-cell contact. The discovery of exosomes provides potential strategies for the diagnosis and treatment of CVD. In the current review, we have explored the potential impact of exosomes on cardiovascular physiology, and their therapeutic potential in cardiovascular disorders with an emphasis on the existing preclinical studies.
Collapse
Affiliation(s)
- Farzaneh Ghafarian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Role of exosomal proteins in cancer diagnosis. Mol Cancer 2017; 16:145. [PMID: 28851367 PMCID: PMC5576100 DOI: 10.1186/s12943-017-0706-8] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
Exosomes are emerging as a new type of cancer biomarkers. Exosome is a bilayered nano-sized vesicle secreted by various living cells in all body fluids. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by cells and cancer cell-specific molecular and genetic contents, exosomes are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of cancer cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma correlate with pathological processes of many diseases including cancer. However, previous studies on exosome application in cancer diagnosis and treatment mainly focussed on miRNAs. With the development of rapid large-scale production, purification, extraction and screening of exosomal contents, exosomal protein application can be explored for early stage cancer diagnosis, monitoring and prognosis evaluation. Here, we summarized the recent developments in application of exosomal proteins for cancer diagnosis.
Collapse
Affiliation(s)
- Weihua Li
- YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Beijing, China.,, NO.8, xitoutiao,Youan men wai, Fengtai District, Beijing, China
| | - Chuanyun Li
- YouAn Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xinjiang Medical University, Wulumuqi, China
| | - Xiuhong Liu
- Beijing Institute of Hepatology, Beijing, China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing, China
| | - Xiuhui Li
- YouAn Hospital, Capital Medical University, Beijing, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|
8
|
H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18030538. [PMID: 28257101 PMCID: PMC5372554 DOI: 10.3390/ijms18030538] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Biology, Faculty of Medicine, The University of Gaziantep, Gaziantep 27310, Turkey.
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Mohamed F Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Arturo Chavez-Reyes
- Centro de Investigación y Estudios Avanzados del IPN, Unidad Monterrey, Apodaca NL CP 66600, Mexico.
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Isola AL, Chen S. Exosomes: The Messengers of Health and Disease. Curr Neuropharmacol 2017; 15:157-165. [PMID: 27568544 PMCID: PMC5327461 DOI: 10.2174/1570159x14666160825160421] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small vesicles comprised of a lipid bilayer containing various proteins, RNAs and bioactive lipids. They act as intercellular messengers that give the ability to communicate between both cells of the same type and other cell types. They are released by healthy cells, both constitutively and upon cell activation and play an important role in immune system function. Exosomes are essential for healthy physiological conditions, however under pathological circumstances, they act to potentiate cellular stress and damage. This review explores the characteristics, biogenesis, role(s) in the pathogenesis of diseases and role(s) in progression of cancer of these nano-sized messages-in-a-vesicle: exosomes.
Collapse
Affiliation(s)
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ, 08854, USA
| |
Collapse
|
10
|
Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, LaRusso NF, Gores GJ, Malhi H. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64:2219-2233. [PMID: 27628960 PMCID: PMC5115968 DOI: 10.1002/hep.28814] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized, membrane-bound vesicles released by cells into the extracellular milieu. EVs are now recognized to play a critical role in cell-to-cell communication. EVs contain important cargo in the form of proteins, lipids, and nucleic acids and serve as vectors for delivering this cargo from donor to acceptor or target cell. EVs are released under both physiologic and pathologic conditions, including liver diseases, and exert a wide range of effects on target cells. This review provides an overview on EV biogenesis, secretion, cargo, and target cell interactions in the context of select liver diseases. Specifically, the diverse roles of EVs in nonalcoholic steatohepatitis, alcoholic liver disease, viral hepatitis, cholangiopathies, and hepatobiliary malignancies are emphasized. Liver diseases often result in an increased release of EVs and/or in different cargo sorting into these EVs. Either of these alterations can drive disease pathogenesis. Given this fact, EVs represent a potential target for therapeutic intervention in liver disorders. Because altered EV composition may reflect the underlying disease condition, circulating EVs can be exploited for diagnostic and prognostic purposes as a liquid biopsy. Furthermore, ex vivo modified or synthesized EVs can be engineered as therapeutic nano-shuttles. Finally, we highlight areas that merit further investigation relevant to understanding how EVs regulate liver disease pathogenesis. (Hepatology 2016;64:2219-2233).
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Leslie A. Morton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
11
|
Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol 2015; 81:2-10. [PMID: 25359529 DOI: 10.1111/sji.12247] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022]
Abstract
Many different cells produce and release membraneous microvesicles (MV) or exosomes into their microenvironment. Exosomes represent a specific subtype of secreted derived vesicles which are defined as homogenous vesicles of 30-100 nm lined by a lipid bilayer, which contain a specific set of proteins, lipids, and nucleic acids. There are clear evidences that they serve as important biological signals messengers and carriers in physiological as well as in pathological processes. Those derived from tumours (tumour-derived exosomes, TD-exosomes) function as protumourigenic factors that can mediate intercellular communication in the tumour microenvironment and also contribute to cancer progression. The main functions of exosomes in the cancer microenvironment include the following: promotion of primary cancer growth, stimulation of angiogenesis, activation of stromal fibroblasts, sculpting the cancer ECM, generation of a premetastatic niche and suppression of host immune response. Exosomes have recently emerged as potentially promising diagnostic and prognostic biomarkers in cancer and other diseases. This article is a summary of information about the structure and origin of exosomes and also indicates the importance of exosomes and microRNAs in lung cancer. The role of exosomes in NSCLC is little known, and its explanation requires thorough research.
Collapse
Affiliation(s)
- M Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
12
|
Corrigan L, Redhai S, Leiblich A, Fan SJ, Perera SMW, Patel R, Gandy C, Wainwright SM, Morris JF, Hamdy F, Goberdhan DCI, Wilson C. BMP-regulated exosomes from Drosophila male reproductive glands reprogram female behavior. ACTA ACUST UNITED AC 2014; 206:671-88. [PMID: 25154396 PMCID: PMC4151142 DOI: 10.1083/jcb.201401072] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Male Drosophila reproductive glands secrete exosomes in a BMP-dependent manner that fuse with sperm after mating and suppress female remating. Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB–exosome pathway in the reproductive tract that appears to be conserved across evolution.
Collapse
Affiliation(s)
- Laura Corrigan
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Siamak Redhai
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Sumeth M W Perera
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Rachel Patel
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - S Mark Wainwright
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - John F Morris
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Freddie Hamdy
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics and Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 3QX, England, UK
| |
Collapse
|
13
|
Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol 2014; 28:24-30. [PMID: 24602822 DOI: 10.1016/j.semcancer.2014.02.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/22/2014] [Indexed: 11/22/2022]
Abstract
Human cancers constitutively produce and release endosome-derived nanometer-sized vesicles called exosomes that carry biologically active proteins, messenger and micro RNAs and serve as vehicles of intercellular communication. The tumour exosomes are present in the blood, urine and various malignant effusions such as peritoneal and pleural fluid of cancer patients and can modulate immune cells and responses thus deranging the immune system of cancer patients and giving advantage to the cancer to establish and spread itself. Here, the role of exosomes in the NKG2D receptor-ligand system's interactions is discussed. The activating NK cell receptor NKG2D and its multiple ligands, the MHC class I-related chain (MIC) A/B and the retinoic acid transcript-1/UL-16 binding proteins (RAET1/ULBP) 1-6 comprise a powerful stress-inducible danger detector system that targets infected, inflamed and malignantly transformed cells and plays a decisive role in anti-tumour immune surveillance. Mounting evidence reveals that the MIC- and RAET1/ULBP ligand family members are enriched in the endosomal compartment of various tumour cells and expressed and released into the intercellular space and bodily fluids on exosomes thus preserving their entire molecule, three-dimensional protein structure and biologic activity. The NKG2D ligand-expressing exosomes serve as decoys with a powerful ability to down regulate the cognate receptor and impair the cytotoxic function of NK-, NKT-, gamma/delta- and cytotoxic T cells. This review summarizes recent findings concerning the role of NKG2D receptor-ligand system in cancer with emphasis on regulation of NKG2D ligand expression and the immunosuppressive role of exosomally expressed NKG2D ligands.
Collapse
|
14
|
Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014; 21:348-58. [PMID: 24440914 DOI: 10.1038/cdd.2013.187] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 01/14/2023] Open
Abstract
Autophagy (macroautophagy) is a highly conserved intracellular and lysosome-dependent degradation process in which autophagic substrates are enclosed and degraded by a double-membrane vesicular structure in a continuous and dynamic vesicle transport process. The Rab protein is a small GTPase that belongs to the Ras-like GTPase superfamily and regulates the vesicle traffic process. Numerous Rab proteins have been shown to be involved in various stages of autophagy. Rab1, Rab5, Rab7, Rab9A, Rab11, Rab23, Rab32, and Rab33B participate in autophagosome formation, whereas Rab9 is required in non-canonical autophagy. Rab7, Rab8B, and Rab24 have a key role in autophagosome maturation. Rab8A and Rab25 are also involved in autophagy, but their role is unknown. Here, we summarize new findings regarding the involvement of Rabs in autophagy and provide insights regarding future research on the mechanisms of autophagy regulation.
Collapse
|
15
|
Shi M, Xie D, Gaod Y, Xie K. Targeting miRNAs for pancreatic cancer therapy. Curr Pharm Des 2014; 20:5279-5286. [PMID: 24479803 PMCID: PMC4113604 DOI: 10.2174/1381612820666140128210443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the United States and has a median 5-year survival rate less than 5%. Although surgery offers the best chance for a cure for pancreatic cancer, less than 20% of patients are eligible for potentially curative resection, because in most cases, the cancer has already spread locally or to distant organs at diagnosis, precluding resection. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal regulators of posttranscriptional gene expression. Extensive studies of miRNAs over the past several years have revealed that the expression of miRNAs is frequently deregulated in pancreatic cancer patients and that this deregulation contributes to the pathogenesis and aggressiveness of the disease. Currently, investigators are studying the use of miRNAs as diagnostic and/or prognostic biomarkers and therapeutic tools for pancreatic cancer. Rapid discovery of many miRNA targets and their relevant pathways has contributed to the development of miRNA-based therapeutics. In particular, the transcription factor Forkhead box M1 (FOXM1) is overexpressed in the majority of cancer patients, including those with pancreatic cancer. This overexpression is implicated to have a role in tumorigenesis, progression, and metastasis. This important role of FOXM1 affirms its usefulness in therapeutic interventions for pancreatic cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of miRNAs and FOXM1 in pancreatic cancer development and describe the roles of the miRNA-FOXM1 signaling pathway in pancreatic cancer initiation and progression. Additionally, we describe some of the technical challenges in the use of the miRNA-FOXM1 signaling pathway in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Shi M, Cui J, Xie K. Signaling of miRNAs-FOXM1 in cancer and potential targeted therapy. Curr Drug Targets 2013; 14:1192-1202. [PMID: 23834153 PMCID: PMC4081534 DOI: 10.2174/13894501113149990192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
Abstract
The transcription factor Forkhead box protein M1 (FOXM1) is overexpressed in the majority of cancer patients. This overexpression is implicated to play a role in the pathogenesis, progression, and metastasis of cancer. This important role of FOXM1 demonstrates its significance to cancer therapy. MicroRNAs (miRNAs) are small noncoding, endogenous, single-stranded RNAs that are pivotal posttranscriptional gene expression regulators. MiRNAs aberrantly expressed in cancer cells have important roles in tumorigenesis and progression. Currently, miRNAs are being studied as diagnostic and prognostic biomarkers and therapeutic tools for cancer. The rapid discovery of many target miRNAs and their relevant pathways has contributed to the development of miRNA-based therapeutics for cancer. In this review, we summarize the latest and most significant findings on FOXM1 and miRNA involvement in cancer development and describe the role/roles of miRNA/FOXM1 signaling pathways in cancer initiation and progression. Targeting FOXM1 via regulation of miRNA expression may have a role in cancer treatment, although the miRNA delivery method remains the key challenge to the establishment of this novel therapy.
Collapse
Affiliation(s)
- Min Shi
- Department of Surgery, Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiujie Cui
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Tatischeff I. Cell-derived microvesicles and antitumoral multidrug resistance. C R Biol 2012; 335:103-6. [DOI: 10.1016/j.crvi.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 12/29/2022]
|
18
|
The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011; 2011:842849. [PMID: 22190973 PMCID: PMC3235485 DOI: 10.1155/2011/842849] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/28/2011] [Indexed: 12/15/2022]
Abstract
Exosomes are endosome-derived, 30–100 nm small membrane vesicles released by most cell types including tumor cells. They are enriched in a selective repertoire of proteins and nucleic acids from parental cells and are thought to be actively involved in conferring intercellular signals. Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce antitumor immune responses. However, tumor-derived exosomes also have been found to possess immunosuppressive properties and are able to facilitate tumor growth, metastasis, and the development of drug resistance. These different effects of tumor-derived exosomes contribute to the pathogenesis of cancer. This review will discuss the roles of tumor-derived exosomes in cancer pathogenesis, therapy, and diagnostics.
Collapse
|
19
|
Abstract
Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis.
Collapse
|
20
|
Chua CEL, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci 2011; 68:3349-58. [PMID: 21687989 PMCID: PMC11114630 DOI: 10.1007/s00018-011-0748-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022]
Abstract
Macroautophagy, the process by which cytosolic components and organelles are engulfed and degraded by a double-membrane structure, could be viewed as a specialized, multistep membrane transport process. As such, it intersects with the exocytic and endocytic membrane trafficking pathways. A number of Rab GTPases which regulate secretory and endocytic membrane traffic have been shown to play either critical or accessory roles in autophagy. The biogenesis of the pre-autophagosomal isolation membrane (or phagophore) is dependent on the functionality of Rab1. A non-canonical, Atg5/Atg7-independent mode of autophagosome generation from the trans-Golgi or endosome requires Rab9. Other Rabs, such as Rab5, Rab24, Rab33, and Rab7 have all been shown to be required, or involved at various stages of autophagosomal genesis and maturation. Another small GTPase, RalB, was very recently demonstrated to induce isolation membrane formation and maturation via its engagement of the exocyst complex, a known Rab effector. We summarize here what is now known about the involvement of Rabs in autophagy, and discuss plausible mechanisms with future perspectives.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bin Qi Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore, 117597 Singapore
| |
Collapse
|
21
|
Qu JL, Zhang W, Liu YP, Qu XJ, Hou KZ, Jiang YH, Yang XH. Role of PI3K/Akt and MAPK/ERK pathways in gastric cancer exosome-mediated promotion of tumor cell proliferation. Shijie Huaren Xiaohua Zazhi 2011; 19:1109-1114. [DOI: 10.11569/wcjd.v19.i11.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of gastric cancer exosomes on homologous tumor cell proliferation and to evaluate the role of PI3K/Akt and MAPK/ERK pathways in this process.
METHODS: Exosomes were isolated and purified from human gastric cancer MGC803 cells by serial centrifugation and sucrose gradient ultracentrifugation and observed by electron microscopy. Cell proliferation was measured by MTT assay, and protein expression was assayed by Western blot.
RESULTS: Gastric cancer exosomes had a characteristic saucer-like shape that was limited by a lipid bilayer, and their diameter ranged from 30 to 100 nm. CD9 and TSG101 were abundantly distributed on the surface of exosomes. Gastric cancer exosomes significantly increased MGC803 and SGC7901 cell proliferation in a time- and dose-dependent manner. Treatment with exosomes up-regulated the expression of phosphorylated Akt and ERK in a time-dependent manner.
CONCLUSION: Gastric cancer exosomes promote homologous tumor cell proliferation possibly by activating the PI3K/Akt and MAPK/ERK pathways.
Collapse
|
22
|
Kodippili GC, Spector J, Kang GE, Liu H, Wickrema A, Ritchie K, Low PS. Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton. Br J Haematol 2010; 150:592-600. [PMID: 20553270 DOI: 10.1111/j.1365-2141.2010.08268.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During definitive erythropoiesis, erythroid precursors undergo differentiation through multiple nucleated states to an enucleated reticulocyte, which loses its residual RNA/organelles to become a mature erythrocyte. Over the course of these transformations, continuous changes in membrane proteins occur, including shifts in protein abundance, rates of expression, isoform prominence, states of phosphorylation, and stability. In an effort to understand when assembly of membrane proteins into an architecture characteristic of the mature erythrocyte occurs, we quantitated the lateral diffusion of the most abundant membrane protein, band 3 (AE1), during each stage of erythropoiesis using single particle tracking. Analysis of the lateral trajectories of individual band 3 molecules revealed a gradual reduction in mobility of the anion transporter as erythroblasts differentiated. Evidence for this progressive immobilization included a gradual decline in diffusion coefficients as determined at a video acquisition rate of 120 frames/s and a decrease in the percentage of compartment sizes >100 nm. Because complete acquisition of the properties of band 3 seen in mature erythrocytes is not observed until circulating erythrocytes are formed, we suggest that membrane maturation involves a gradual and cooperative assembly process that is not triggered by the synthesis of any single protein.
Collapse
|
23
|
Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 2009; 625:220-33. [PMID: 19836374 DOI: 10.1016/j.ejphar.2009.06.063] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/12/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Chloroquine (CQ), N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine, is widely used as an effective and safe anti-malarial and anti-rheumatoid agent. CQ was discovered 1934 as "Resochin" by Andersag and co-workers at the Bayer laboratories. Ironically, CQ was initially ignored for a decade because it was considered too toxic to use in humans. CQ was "re-discovered" during World War II in the United States in the course of anti-malarial drug development. The US government-sponsored clinical trials during this period showed unequivocally that CQ has a significant therapeutic value as an anti-malarial drug. Consequently, CQ was introduced into clinical practice in 1947 for the prophylaxis treatment of malaria (Plasmodium vivax, ovale and malariae). CQ still remains the drug of choice for malaria chemotherapy because it is highly effective and well tolerated by humans. In addition, CQ is widely used as an anti-inflammatory agent for the treatment of rheumatoid arthritis, lupus erythematosus and amoebic hepatitis. More recently, CQ has been studied for its potential as an enhancing agent in cancer therapies. Accumulating lines of evidence now suggest that CQ can effectively sensitize cell-killing effects by ionizing radiation and chemotherapeutic agents in a cancer-specific manner. The lysosomotrophic property of CQ appears to be important for the increase in efficacy and specificity. Although more studies are needed, CQ may be one of the most effective and safe sensitizers for cancer therapies. Taken together, it appears that the efficacy of conventional cancer therapies can be dramatically enhanced if used in combination with CQ and its analogs.
Collapse
Affiliation(s)
- V Raja Solomon
- Tumor Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 5J1
| | | |
Collapse
|
24
|
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3720-30. [PMID: 19692638 PMCID: PMC3721354 DOI: 10.4049/jimmunol.0900970] [Citation(s) in RCA: 454] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients' sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients' sera, we used MAGE 3/6(+) present in tumors and MV. Molecular profiles of MAGE 3/6(+) MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6(+) and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8(+) and CD4(+) T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8(+) but not CD4(+) T cells and induced apoptosis of CD8(+) T cells, including tumor-reactive, tetramer(+)CD8(+) T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4(+)CD25(+)FOXP3(+) T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8(+) effector T cells, thus contributing to tumor escape.
Collapse
Affiliation(s)
- Eva U. Wieckowski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Carmen Visus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Marta Szajnik
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | | | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
25
|
Abstract
HIV infection of macrophages is a critically important component of viral pathogenesis and progression to AIDS. Although the virus follows the same life cycle in macrophages and T lymphocytes, several aspects of the virus-host relationship are unique to macrophage infection. Examples of these are the long-term persistence of productive infection, sustained by the absence of cell death, and the ability of progeny virus to bud into and accumulate in endocytic compartments designated multivesicular bodies (MVBs). Recently, the hypothesis that viral exploitation of the macrophage endocytic machinery is responsible for perpetuating the chronic state of infection unique to this cell type has been challenged in several independent studies employing a variety of experimental strategies. This review examines the evidence supporting and refuting the canonical hypothesis and highlights recently identified cellular factors that may contribute to the unique aspects of the HIV-macrophage interaction.
Collapse
Affiliation(s)
- Carol A Carter
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
26
|
Mishima Y, Terui Y, Mishima Y, Taniyama A, Kuniyoshi R, Takizawa T, Kimura S, Ozawa K, Hatake K. Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors. Cancer Sci 2008; 99:2200-8. [PMID: 18823378 PMCID: PMC11158545 DOI: 10.1111/j.1349-7006.2008.00932.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy, a cellular degradation system has been demonstrated in some hematopoietic malignant cell lines, but there is much still remaining to be known about its role and the mechanisms. We observed the excessive autophagy in chronic myelogenous leukemia (CML) cell line, K562, associated with treatment of 12-O-tetradecanoyl-phorbol-13-acetate (TPA), which can induce K562 cells to differentiate into megakaryocytic lineage. Confocal microscopic analysis demonstrated that autophagic cells did not express a megakaryocyte marker, the CD41 molecule, indicating that the autophagy was independent of megakaryocytic differentiation. After remarkable autophagic degradation, the cells finally underwent autophagic cell death (APCD). On the other hand, a block of TPA-induced autophagy by chloroquine rapidly promoted cell death that was not APCD. This result suggested that autophagy regulated two mechanisms in K562 cells: both the cell survival system and APCD. To confirm that autophagy regulates the cell survival system in K562 cells, imatinib was used to induce cell death in K562 cells. Autophagy has not been considered during imatinib treatment; nonetheless, co-treatment with imatinib and chloroquine markedly enhanced imatinib-induced cell death, compared to K562 cells treated only with imatinib. Furthermore, imatinib-resistant cell lines, BaF3/T315I and BaF3/E255K, also underwent cell death by co-treatment with imatinib and chloroquine. From these data, we concluded that autophagy is deeply related to the cell survival system and that inhibition of autophagy accelerates TPA- or imatinib-induced cell death. The block of autophagy could be a new strategy in the treatment of CML.
Collapse
Affiliation(s)
- Yuko Mishima
- Department of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2007; 9:230-50. [PMID: 17999726 DOI: 10.1111/j.1600-0854.2007.00677.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.
Collapse
Affiliation(s)
- Claudio M Fader
- Laboratorio de Biología Celular y Molecular - Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
28
|
Mitra BN, Saito-Nakano Y, Nakada-Tsukui K, Sato D, Nozaki T. Rab11B small GTPase regulates secretion of cysteine proteases in the enteric protozoan parasiteEntamoeba histolytica. Cell Microbiol 2007; 9:2112-25. [PMID: 17441984 DOI: 10.1111/j.1462-5822.2007.00941.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vesicular trafficking plays a pivotal role in the virulence of the enteric protozoan parasite Entamoeba histolytica. In the present study, we showed that one isotype of the small GTPase Rab11, EhRab11B, plays a central role in the secretion of a major virulence factor, cysteine proteases. EhRab11B did not colocalize with markers for the endoplasmic reticulum, early endosomes and lysosomes, but was partially associated with non-acidified vesicles in the endocytic pathway, likely recycling endosomes. Overexpression of EhRab11B resulted in a remarkable increase in both intracellular and secreted cysteine protease activity, concomitant with an augmentation of cytolytic activity as demonstrated by an increased ability to destroy mammalian cells. The oversecretion of cysteine proteases with EhRab11B overexpression was neither sensitive to brefeldin A nor specific to a certain cysteine protease species (e.g. CP1, 2 or 5), suggesting that these three major cysteine proteases are trafficked via an EhRab11B-associated secretory pathway, which is distinct from the classical brefeldin-sensitive pathway. Overexpression of EhRab11B also enhanced exocytosis of the incorporated fluid-phase marker, supporting the notion that it is involved in recycling. This is the first report demonstrating that Rab11 plays a central role in the transport and secretion of pathogenic factors.
Collapse
Affiliation(s)
- Biswa Nath Mitra
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-851, Japan
| | | | | | | | | |
Collapse
|
29
|
Massaccesi L, Lombardo A, Venerando B, Tettamanti G, Goi G. Isoenzyme pattern and partial characterization of hexosaminidases in the membrane and cytosol of human erythrocytes. Clin Biochem 2007; 40:467-77. [PMID: 17321512 DOI: 10.1016/j.clinbiochem.2006.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 11/08/2006] [Accepted: 12/04/2006] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Hexosaminidase activity is present in lysosomes, plasma membrane and cytosol of many human cells. Plasma membrane and cytosolic hexosaminidase is not well characterized, particularly as regards their isoenzyme forms and their relationship with the lysosomal ones. DESIGN AND METHODS Erythrocyte hexosaminidase isoforms were chromatographically separated, characterized and compared to those in the plasma of healthy individuals and in the erythrocytes of a Tay-Sachs patient. RESULTS Hexosaminidase isoenzymes were found in plasma membrane and cytosol and were composed of the same alpha- and beta-subunits as the lysosomal and plasma hexosaminidase A and B isoenzymes, though with some structural and kinetic differences. In addition, the cytosol contained a hexosaminidase that is a specific N-acetyl-beta-D-glucosaminidase, the one involved in the removal of N-acetylglucosamine residues O-linked to proteins, named O-GlcNAcase. CONCLUSIONS This work provides an additional step in the characterization of hexosaminidases helping better understand their role in non-lysosomal compartments and their involvement in physiological or pathological situations.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, School of Medicine, Via Saldini, 50-20133 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Abstract
Exosomes are nanometer sized membrane vesicles invaginating from multivesicular bodies and secreted from epithelial and hematopoietic cells. They were first described "in vitro" but vesicles with the hallmarks of exosomes are present in vivo in germinal centers and biological fluids. Their protein and lipid composition are unique and could account for their expanding functions such as eradication of obsolete proteins, antigen presentation or "Trojan horses" for viruses or prions. Exosome secretion could be a regulated process participating in the transfer of molecules inbetween immune cells. Despite numerous questions pertaining to their biological relevance, the potential of dendritic cell derived-exosomes as cell-free cancer vaccines is currently being assessed. This review will summarize the composition and formation of exosomes, preclinical data, Phase I trials and optimization protocols for improving their immunogenicity in tumor bearing patients.
Collapse
Affiliation(s)
- G Mignot
- U805 Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Paris Sud - Université Paris XI, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
31
|
Chen VY, Posada MM, Blazer LL, Zhao T, Rosania GR. The role of the VPS4A-exosome pathway in the intrinsic egress route of a DNA-binding anticancer drug. Pharm Res 2006; 23:1687-95. [PMID: 16841193 DOI: 10.1007/s11095-006-9043-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/18/2006] [Indexed: 12/24/2022]
Abstract
PURPOSE This study investigates the subcellular pharmacokinetics of drug efflux in cancer cells and explores the role of the multivesicular body (MVB) in facilitating efflux of doxorubicin, a widely used DNA-targeting anticancer agent, from the nucleus. METHODS Human erythroleukemic K562 cells were pulsed with doxorubicin and then chased in drug-free media to allow for efflux. Microscopy and biochemical techniques were used to visualize the subcellular localization of the drug and measure drug content and distribution during the efflux period. To explore the role of the MVB in doxorubicin efflux, K562 cells were transfected with dominant negative mutant forms of VPS4a-GFP chimeras. RESULTS Although the intracellular concentration of drug exceeds the extracellular concentration, nuclear efflux of doxorubicin occurs in living cells at a faster rate than doxorubicin unbinding from isolated nuclei into drug-free buffer. In cells expressing dominant negative VPS4a, doxorubicin accumulates in VPS4a-positive vesicles and drug sequestration is inhibited, directly implicating the MVB pathway in the egress route of doxorubicin in this cell type. CONCLUSIONS Cellular membranes are a component of the doxorubicin efflux mechanism in K562 cells. Dominant-negative GFP chimeric mutants can be used to elucidate the role of specific membrane trafficking pathways in subcellular drug transport routes.
Collapse
Affiliation(s)
- Vivien Y Chen
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church St., Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
32
|
Johnstone RM. Exosomes biological significance: A concise review. Blood Cells Mol Dis 2006; 36:315-21. [PMID: 16487731 DOI: 10.1016/j.bcmd.2005.12.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 01/12/2023]
Abstract
Exosomes were initially thought to be a mechanism for removing unneeded membrane proteins from reticulocytes. Current studies have shown that the process of exosome formation extends to many mammalian cells. This concise review highlights the findings reported at a Workshop on Exosomes. Full knowledge of the contribution of exosomes to intercellular information transmission and the potential medical application of this knowledge will depend on the ingenuity of future investigators and their insight into biological processes.
Collapse
Affiliation(s)
- Rose M Johnstone
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.
| |
Collapse
|