1
|
Vlasveld LT, Janssen R, Bardou-Jacquet E, Venselaar H, Hamdi-Roze H, Drakesmith H, Swinkels DW. Twenty Years of Ferroportin Disease: A Review or An Update of Published Clinical, Biochemical, Molecular, and Functional Features. Pharmaceuticals (Basel) 2019; 12:ph12030132. [PMID: 31505869 PMCID: PMC6789780 DOI: 10.3390/ph12030132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Iron overloading disorders linked to mutations in ferroportin have diverse phenotypes in vivo, and the effects of mutations on ferroportin in vitro range from loss of function (LOF) to gain of function (GOF) with hepcidin resistance. We reviewed 359 patients with 60 ferroportin variants. Overall, macrophage iron overload and low/normal transferrin saturation (TSAT) segregated with mutations that caused LOF, while GOF mutations were linked to high TSAT and parenchymal iron accumulation. However, the pathogenicity of individual variants is difficult to establish due to the lack of sufficiently reported data, large inter-assay variability of functional studies, and the uncertainty associated with the performance of available in silico prediction models. Since the phenotypes of hepcidin-resistant GOF variants are indistinguishable from the other types of hereditary hemochromatosis (HH), these variants may be categorized as ferroportin-associated HH, while the entity ferroportin disease may be confined to patients with LOF variants. To further improve the management of ferroportin disease, we advocate for a global registry, with standardized clinical analysis and validation of the functional tests preferably performed in human-derived enterocytic and macrophagic cell lines. Moreover, studies are warranted to unravel the definite structure of ferroportin and the indispensable residues that are essential for functionality.
Collapse
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden MC-Bronovo, 2597AX The Hague, The Netherlands
| | - Roel Janssen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Edouard Bardou-Jacquet
- Liver Diseases Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud, University Medical Center, P.O. Box 9191, 6500 HB Nijmegen, The Netherlands
| | - Houda Hamdi-Roze
- Molecular Genetics Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102:1972-1984. [PMID: 29101207 PMCID: PMC5709096 DOI: 10.3324/haematol.2017.170720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia Policlinico, Modena, Italy
| |
Collapse
|
3
|
Tortosa V, di Patti MCB, Musci G, Polticelli F. The human iron exporter ferroportin. Insight into the transport mechanism by molecular modeling. BIO-ALGORITHMS AND MED-SYSTEMS 2016. [DOI: 10.1515/bams-2015-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractFerroportin, a membrane protein belonging to the major facilitator superfamily of transporters, is the only vertebrate iron exporter known so far. Several ferroportin mutations lead to the so-called ferroportin disease or type 4 hemochromatosis, characterized by two distinct iron accumulation phenotypes depending on whether the mutation affects the activity of the protein or its degradation pathway. Through extensive molecular modeling analyses using the structure of all known major facilitator superfamily members as templates, multiple structural models of ferroportin in the three mechanistically relevant conformations (inward open, occluded, and outward open) have been obtained. The best models, selected on the ground of experimental data available on wild-type and mutant ferroportion, provide for the first time a prediction at the atomic level of the dynamics of the transporter. Based on these results, a possible mechanism for iron export is proposed.
Collapse
|
4
|
Détivaud L, Island ML, Jouanolle AM, Ropert M, Bardou-Jacquet E, Le Lan C, Mosser A, Leroyer P, Deugnier Y, David V, Brissot P, Loréal O. Ferroportin diseases: functional studies, a link between genetic and clinical phenotype. Hum Mutat 2013; 34:1529-36. [PMID: 23943237 DOI: 10.1002/humu.22396] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
Ferroportin (FPN) mediates iron export from cells and this function is modulated by serum hepcidin. Mutations in the FPN gene (SLC40A1) lead to autosomal dominant iron overload diseases related either to loss or to gain of function, and usually characterized by normal or low transferrin saturation versus elevated transferrin saturation, respectively. However, for the same mutation, the phenotypic expression may vary from one patient to another. Using in vitro overexpression of wild-type or mutant FPN proteins, we characterized the functional impact of five recently identified FPN gene mutations regarding FPN localization, cell iron status, and hepcidin sensitivity. Our aim was to integrate functional results and biological findings in probands and relatives. We show that while the p.Arg371Gln (R371Q) mutation had no impact on studied parameters, the p.Trp158Leu (W158L), p.Arg88Gly (R88G), and p.Asn185Asp (N185D) mutations caused an iron export defect and were classified as loss-of-function mutations. The p.Gly204Ser (G204S) mutation induced a gain of FPN function. Functional studies are useful to determine whether or not a FPN gene mutation found in an iron overloaded patient is deleterious and to characterize its biological impact, especially when family studies are not fully informative and/or additional confounding factors may affect bio-clinical expression.
Collapse
Affiliation(s)
- Lénaïck Détivaud
- CHU Rennes, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, Rennes, France; CHU Rennes, Department of Molecular Biology, Rennes, France; CHU Rennes, Department of Liver Diseases, Rennes, France; INSERM UMR 991, Equipe Fer et Foie, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Le Lan C, Mosser A, Ropert M, Detivaud L, Loustaud-Ratti V, Vital-Durand D, Roget L, Bardou-Jacquet E, Turlin B, David V, Loréal O, Deugnier Y, Brissot P, Jouanolle AM. Sex and acquired cofactors determine phenotypes of ferroportin disease. Gastroenterology 2011; 140:1199-1207.e1-2. [PMID: 21199650 DOI: 10.1053/j.gastro.2010.12.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Ferroportin disease is characterized by iron overload. It has an autosomal-dominant pattern of inheritance and has been associated with mutations in the SLC40A1 gene, which encodes the cellular iron exporter ferroportin. Since the first description in 2001, about 30 mutations have been reported; the heterogeneity of ferroportin disease phenotypes has led to the hypothesis that the nature of the mutation affects the function of the protein in different ways. We studied genotypes and phenotypes of a large cohort of patients with ferroportin disease. METHODS We studied clinical, biochemical, imaging, histologic, and genetic data from 70 affected subjects from 33 families with 19 mutations. RESULTS We found that ferroportin disease, at the time of diagnosis, has limited consequences in the absence of cofactors. Data indicated that transferrin saturation, which correlated with fibrosis and levels of alanine aminotransferase, might be a marker of disease severity. Although the study was performed in a large number of families, we observed incomplete penetrance and no correlation between genotypes and phenotypes. CONCLUSIONS Members of families with ferroportin disease should be screened for biochemical parameters of iron metabolism as well as genotype to detect silent mutations that might cause disease with acquired or genetic cofactors. Patients should be followed up long term to identify potential complications of the disease.
Collapse
Affiliation(s)
- Caroline Le Lan
- Service des Maladies du Foie, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin and INSERM U-991, University Hospital Pontchaillou, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J Hepatol 2010; 53:941-9. [PMID: 20691492 PMCID: PMC2956830 DOI: 10.1016/j.jhep.2010.05.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 05/09/2010] [Accepted: 05/15/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Classical ferroportin disease is characterized by hyperferritinemia, normal transferrin saturation, and iron overload in macrophages. A non-classical form is characterized by additional hepatocellular iron deposits and a high transferrin saturation. Both forms demonstrate autosomal dominant transmission and are associated with ferroportin gene (SLC40A1) mutations. SLC40A1 encodes a cellular iron exporter expressed in macrophages, enterocytes, and hepatocytes. The aim of the analysis is to determine the penetrance of SLC40A1 mutations and to evaluate in silico tools to predict the functional impairment of ferroportin mutations as an alternative to in vitro studies. METHODS We conducted a systematic review of the literature and meta-analysis of the biochemical presentation, genetics, and pathology of ferroportin disease. RESULTS Of the 176 individuals reported with SLC40A1 mutations, 80 were classified as classical phenotype with hyperferritinemia and normal transferrin saturation. The non-classical phenotype with hyperferritinemia and elevated transferrin saturation was present in 53 patients. The remaining patients had normal serum ferritin or the data were reported incompletely. Despite an increased hepatic iron concentration in all biopsied patients, significant fibrosis or cirrhosis was present in only 11%. Hyperferritinemia was present in 86% of individuals with ferroportin mutations. Bio-informatic analysis of ferroportin mutations showed that the PolyPhen score has a sensitivity of 99% and a specificity of 67% for the discrimination between ferroportin mutations and polymorphisms. CONCLUSIONS In contrast to HFE hemochromatosis, ferroportin disease has a high penetrance, is genetically heterogeneous and is rarely associated with fibrosis. Non-classical ferroportin disease is associated with a higher risk of fibrosis and a more severe overload of hepatic iron.
Collapse
|
7
|
Pelucchi S, Mariani R, Salvioni A, Bonfadini S, Riva A, Bertola F, Trombini P, Piperno A. Novel mutations of the ferroportin gene (SLC40A1): analysis of 56 consecutive patients with unexplained iron overload. Clin Genet 2007; 73:171-8. [DOI: 10.1111/j.1399-0004.2007.00950.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Lee PL, Gelbart T, West C, Barton JC. SLC40A1 c.1402G-->a results in aberrant splicing, ferroportin truncation after glycine 330, and an autosomal dominant hemochromatosis phenotype. Acta Haematol 2007; 118:237-41. [PMID: 18160816 DOI: 10.1159/000112830] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To determine the molecular basis of a mild hemochromatosis phenotype in a man of Scottish-Irish descent. METHODS We sequenced genomic DNA to detect mutations of HFE, SLC40A1, TFR2, HAMP, and HFE2. RNA isolated from blood mononuclear cells was used to make cDNA. RT-PCR was performed to amplify ferroportin from cDNA, and amplified products were visualized by electrophoresis and sequenced. RESULTS The proband was heterozygous for the novel mutation c.1402G-->A (predicted G468S) in exon 7 of the ferroportin gene (SLC40A1). Located in the last nucleotide before the splice junction, this mutation results in aberrant splicing to a cryptic upstream splice site located at nt 990 within the same exon. This causes truncation of ferroportin after glycine 330 and the addition of 4 irrelevant amino acids before terminating. The truncated ferroportin protein, missing its C-terminal 241 amino acids, would lack all structural motifs beyond transmembrane region 7. The patient was also heterozygous for the common HFE H63D polymorphism, but did not have coding region mutations in TFR2, HAMP, or HFE2. CONCLUSIONS We conclude that this patient represents a unique example of hemochromatosis due to a single base-pair mutation of SLC40A1 that results in aberrant splicing and truncation of ferroportin.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, Calif, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. An adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.
Collapse
Affiliation(s)
- Daniel-F Wallace
- Membrane Transport Laboratory, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | | |
Collapse
|
10
|
Abstract
Hepcidin evolves as a potent hepatocyte-derived regulator of the body's iron distribution piloting the flow of iron via, and directly binding, to the cellular iron exporter ferroportin. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis, namely placental syncytiotrophoblasts, duodenal enterocytes, hepatocytes and macrophages of the reticuloendothelial system. The gene that encodes hepcidin expression (HAMP) is subject to regulation by proinflammatory cytokines, such as IL-6 and IL-1; excessive hepcidin production explains the relative deficiency of iron during inflammatory states, eventually resulting in the anaemia of inflammation. The haemochromatosis genes HFE, TfR2 and HJV potentially facilitate the transcription of HAMP. Disruption of each of the four genes leads to a diminished hepatic release of hepcidin consistent with both a dominant role of hepcidin in hereditary haemochromatosis and an upstream regulatory role of HFE, TfR2 and HJV on HAMP expression. The engineered generation of hepcidin agonists, mimetics or antagonists could largely broaden current therapeutic strategies to redirect the flow of iron.
Collapse
Affiliation(s)
- R Deicher
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|