1
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Molokie R, DeSimone J, Lavelle D. Epigenetic regulation of hemoglobin switching in non-human primates. Semin Hematol 2020; 58:10-14. [PMID: 33509438 DOI: 10.1053/j.seminhematol.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/11/2022]
Abstract
Human hemoglobin switching describes the highly regulated, sequential expression of the 5 β-like globin genes (HBE, HBG2, HBG1, HBD and HBB) of the human β-globin gene complex. The sequential activation of these β or β-like globin genes during human development from early embryonic through late fetal ('adult') stages, and during erythroid maturation, occurs in an order corresponding to their 5' to 3' location on chromosome 11. The β-hemoglobinopathies are the most common inherited diseases in humanity, and are diseases of mutated HBB or its altered regulation. Since the other β-like globin genes can potentially substitute for defective HBB, much translational research is directed toward understanding and manipulating sequential activation at the human β-globin gene complex to treat β-hemoglobinopathies. Non-human primates provide a vital contribution to such efforts because of their recapitulation of the developmental/maturational switch in hemoglobin production as observed in humans (mice do not model this switch). Valuable insights into druggable epigenetic forces that mediate the switch have been thereby gained. We review important lessons learned in non-human primates, complemented by other studies, and suggest rational next steps.
Collapse
Affiliation(s)
- Robert Molokie
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL
| | - Joseph DeSimone
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL
| | - Donald Lavelle
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL.
| |
Collapse
|
3
|
Li S, Liu X, Liu H, Zhang X, Ye Q, Zhang H. Induction, identification and genetics analysis of tetraploid Actinidia chinensis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191052. [PMID: 31827844 PMCID: PMC6894549 DOI: 10.1098/rsos.191052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/16/2019] [Indexed: 05/30/2023]
Abstract
Actinidia chinensis is a commercially important fruit, and tetraploid breeding of A. chinensis is of great significance for economic benefit. In order to obtain elite tetraploid cultivars, tetraploid plants were induced by colchicine treatment with leaves of diploid A. chinensis 'SWFU03'. The results showed that the best treatment was dipping leaves 30 h in 60 mg l-1 colchicine solutions, with induction rate reaching 26%. Four methods, including external morphology comparison, stomatal guard cell observation, chromosome number observation and flow cytometry analysis were used to identify the tetraploid of A. chinensis. Using the induction system and flow cytometry analysis methods, 187 tetraploid plants were identified. Three randomly selected tetraploid plants and their starting diploid plants were further subjected to transcriptome analysis, real-time quantitative polymerase chain reaction (RT-qPCR) and methylation-sensitive amplification polymorphism (MSAP) analysis. The transcriptome analysis results showed that there were a total of 2230 differentially expressed genes (DEG) between the diploid and tetraploid plants, of which 660 were downregulated and 1570 upregulated. The DEGs were mainly the genes involved in growth and development, stress resistance and antibacterial ability in plants. RT-qPCR results showed that the gene expression levels of the growth and stress resistance of tetraploid plants were higher than those of diploid ones at the transcriptome level. MSAP analysis of DNA methylation results showed that tetraploid plants had lower methylation ratio than diploid ones. The present results were valuable to further explore the epigenetics of diploid and tetraploid kiwifruit plants.
Collapse
Affiliation(s)
- Shengxing Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Huiming Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xianang Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Qinxia Ye
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| |
Collapse
|
4
|
Starlard-Davenport A, Smith A, Vu L, Li B, Pace BS. MIR29B mediates epigenetic mechanisms of HBG gene activation. Br J Haematol 2019; 186:91-100. [PMID: 30891745 PMCID: PMC6589104 DOI: 10.1111/bjh.15870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) affects over 2 million people worldwide with high morbidity and mortality in underdeveloped countries. Therapeutic interventions aimed at reactivating fetal haemoglobin (HbF) is an effective approach for improving survival and ameliorating the clinical severity of SCD. A class of agents that inhibit DNA methyltransferase (DNMT) activity show promise as HbF inducers because off-target effects are not observed at low concentrations. However, these compounds are rapidly degraded by cytidine deaminase when taken by oral administration, creating a critical barrier to clinical development for SCD. We previously demonstrated that microRNA29B (MIR29B) inhibits de novo DNMT synthesis, therefore, the goal of our study was to determine if MIR29 mediates HbF induction. Overexpression of MIR29B in human KU812 cells and primary erythroid progenitors significantly increased the percentage of HbF positive cells, while decreasing the expression of DNMT3A and the HBG repressor MYB. Furthermore, HBG promoter methylation levels decreased significantly following MIR29B overexpression in human erythroid progenitors. We subsequently, observed higher MIR29B expression in SCD patients with higher HbF levels compared to those with low HbF. Our findings provide evidence for the ability of MIR29B to induce HbF and supports further investigation to expand treatment options for SCD.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alana Smith
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Luan Vu
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Biaoru Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
6
|
Wang Y, Wang Y, Ma L, Nie M, Ju J, Liu M, Deng Y, Yao B, Gui T, Li X, Guo C, Ma C, Tan R, Zhao Q. Heterochromatin Protein 1γ Is a Novel Epigenetic Repressor of Human Embryonic ϵ-Globin Gene Expression. J Biol Chem 2017; 292:4811-4817. [PMID: 28154185 DOI: 10.1074/jbc.m116.768515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022] Open
Abstract
Production of hemoglobin during development is tightly regulated. For example, expression from the human β-globin gene locus, comprising β-, δ-, ϵ-, and γ-globin genes, switches from ϵ-globin to γ-globin during embryonic development and then from γ-globin to β-globin after birth. Expression of human ϵ-globin in mice has been shown to ameliorate anemia caused by β-globin mutations, including those causing β-thalassemia and sickle cell disease, raising the prospect that reactivation of ϵ-globin expression could be used in managing these conditions in humans. Although the human globin genes are known to be regulated by a variety of multiprotein complexes containing enzymes that catalyze epigenetic modifications, the exact mechanisms controlling ϵ-globin gene silencing remain elusive. Here we found that the heterochromatin protein HP1γ, a multifunctional chromatin- and DNA-binding protein with roles in transcriptional activation and elongation, represses ϵ-globin expression by interacting with a histone-modifying enzyme, lysine methyltransferase SUV4-20h2. Silencing of HP1γ expression markedly decreased repressive histone marks and the multimethylation of histone H3 lysine 9 and H4 lysine 20, leading to a significant decrease in DNA methylation at the proximal promoter of the ϵ-globin gene and greatly increased ϵ-globin expression. In addition, using chromatin immunoprecipitation, we showed that SUV4-20h2 facilitates the deposition of HP1γ on the ϵ-globin-proximal promoter. Thus, these data indicate that HP1γ is a novel epigenetic repressor of ϵ-globin gene expression and provide a potential strategy for targeted therapies for β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Yadong Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingling Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Min Nie
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Junyi Ju
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ming Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yexuan Deng
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bing Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Gui
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chan Guo
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chi Ma
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Renxiang Tan
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Quan Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Rivers A, Vaitkus K, Ibanez V, Ruiz MA, Jagadeeswaran R, Saunthararajah Y, Cui S, Engel JD, DeSimone J, Lavelle D. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica 2016; 101:688-97. [PMID: 26858356 DOI: 10.3324/haematol.2015.140749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 12/26/2022] Open
Abstract
Increased fetal hemoglobin levels lessen the severity of symptoms and increase the lifespan of patients with sickle cell disease. Hydroxyurea, the only drug currently approved for the treatment of sickle cell disease, is not effective in a large proportion of patients and therefore new pharmacological agents that increase fetal hemoglobin levels have long been sought. Recent studies identifying LSD-1 as a repressor of γ-globin expression led to experiments demonstrating that the LSD-1 inhibitor RN-1 increased γ-globin expression in the sickle cell mouse model. Because the arrangement and developmental stage-specific expression pattern of the β-like globin genes is highly conserved between man and baboon, the baboon model remains the best predictor of activity of fetal hemoglobin-inducing agents in man. In this report, we demonstrate that RN-1 increases γ-globin synthesis, fetal hemoglobin, and F cells to high levels in both anemic and non-anemic baboons with activity comparable to decitabine, the most potent fetal hemoglobin-inducing agent known. RN-1 not only restores high levels of fetal hemoglobin but causes the individual 5' Iγ- and 3' Vγ-globin chains to be synthesized in the ratio characteristic of fetal development. Increased fetal hemoglobin was associated with increased levels of acetylated Histone H3, H3K4Me2, H3K4Me3, and RNA polymerase II at the γ-globin gene, and diminished γ-globin promoter DNA methylation. RN-1 is likely to induce clinically relevant levels of fetal hemoglobin in patients with sickle cell disease, although careful titration of the dose may be required to minimize myelotoxicity.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Kestis Vaitkus
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Armila Ruiz
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuaiying Cui
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James D Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph DeSimone
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown VA Medical Center, Chicago, IL, USA Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Ruiz MA, Rivers A, Ibanez V, Vaitkus K, Mahmud N, DeSimone J, Lavelle D. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation. Epigenetics 2016; 10:397-407. [PMID: 25932923 PMCID: PMC4622718 DOI: 10.1080/15592294.2015.1039220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.
Collapse
|
9
|
Wang Y, Rank G, Li Z, Wang Y, Ju J, Nuber A, Wu Y, Liu M, Nie M, Huang F, Cerruti L, Ma C, Tan R, Schotta G, Jane SM, Zeng CK, Zhao Q. ε-globin expression is regulated by SUV4-20h1. Haematologica 2016; 101:e168-72. [PMID: 26802048 DOI: 10.3324/haematol.2015.139980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Gerhard Rank
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | - Zhuchen Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Alexander Nuber
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, Martinsried, Germany
| | - Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Min Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Feifei Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Loretta Cerruti
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Gunnar Schotta
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, Martinsried, Germany
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC, Australia
| | | | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| |
Collapse
|
10
|
McColl B, Kao BR, Lourthai P, Chan K, Wardan H, Roosjen M, Delagneau O, Gearing LJ, Blewitt ME, Svasti S, Fucharoen S, Vadolas J. An in vivo model for analysis of developmental erythropoiesis and globin gene regulation. FASEB J 2014; 28:2306-17. [PMID: 24443374 DOI: 10.1096/fj.13-246637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of fetal γ-globin in adulthood ameliorates symptoms of β-hemoglobinopathies by compensating for the mutant β-globin. Reactivation of the silenced γ-globin gene is therefore of substantial clinical interest. To study the regulation of γ-globin expression, we created the GG mice, which carry an intact 183-kb human β-globin locus modified to express enhanced green fluorescent protein (eGFP) from the Gγ-globin promoter. GG embryos express eGFP first in the yolk sac blood islands and then in the aorta-gonad mesonephros and the fetal liver, the sites of normal embryonic hematopoiesis. eGFP expression in erythroid cells peaks at E9.5 and then is rapidly silenced (>95%) and maintained at low levels into adulthood, demonstrating appropriate developmental regulation of the human β-globin locus. In vitro knockdown of the epigenetic regulator DNA methyltransferase-1 in GG primary erythroid cells increases the proportion of eGFP(+) cells in culture from 41.9 to 74.1%. Furthermore, eGFP fluorescence is induced >3-fold after treatment of erythroid precursors with epigenetic drugs known to induce γ-globin expression, demonstrating the suitability of the Gγ-globin eGFP reporter for evaluation of γ-globin inducers. The GG mouse model is therefore a valuable model system for genetic and pharmacologic studies of the regulation of the β-globin locus and for discovery of novel therapies for the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Bradley McColl
- 2Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Banzon V, Ibanez V, Vaitkus K, Ruiz MA, Peterson K, DeSimone J, Lavelle D. siDNMT1 increases γ-globin expression in chemical inducer of dimerization (CID)-dependent mouse βYAC bone marrow cells and in baboon erythroid progenitor cell cultures. Exp Hematol 2010; 39:26-36.e1. [PMID: 20974210 DOI: 10.1016/j.exphem.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/24/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
OBJECTIVE These studies were performed to test the hypothesis that DNMT1 is required for maintenance of DNA methylation and repression of the γ-globin gene in adult-stage erythroid cells. MATERIALS AND METHODS DNMT1 levels were reduced by nucleofection of small interfering RNA targeting DNMT1 in chemical inducer of dimerization-dependent multipotential mouse bone marrow cells containing the human β-globin gene locus in the context of a yeast artificial chromosome and in primary cultures of erythroid progenitor cells derived from CD34(+) baboon bone marrow cells. The effect of reduced DNMT1 levels on globin gene expression was measured by real-time polymerase chain reaction and the effect on globin chain synthesis in primary erythroid progenitor cell cultures was determined by biosynthetic radiolabeling of globin chains followed by high-performance liquid chromatography analysis. The effect on DNA methylation was determined by bisulfite sequence analysis. RESULTS Reduced DNMT1 levels in cells treated with siDNMT1 were associated with increased expression of γ-globin messenger RNA, an increased γ/γ+β chain ratio in cultured erythroid progenitors, and decreased DNA methylation of the γ-globin promoter. Similar effects were observed in cells treated with decitabine, a pharmacological inhibitor of DNA methyltransferase inhibitor. CONCLUSIONS DNMT1 is required to maintain DNA methylation of the γ-globin gene promoter and repress γ-globin gene expression in adult-stage erythroid cells.
Collapse
Affiliation(s)
- Virryan Banzon
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Akpan I, Banzon V, Ibanez V, Vaitkus K, DeSimone J, Lavelle D. Decitabine increases fetal hemoglobin in Papio anubis by increasing γ-globin gene transcription. Exp Hematol 2010; 38:989-993.e1. [PMID: 20713129 DOI: 10.1016/j.exphem.2010.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/28/2010] [Accepted: 08/06/2010] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The mechanism responsible for increased fetal hemoglobin levels following decitabine treatment remains controversial. These experiments were performed to evaluate the role of transcriptional vs. translational mechanisms in the ability of decitabine to increase fetal hemoglobin levels in vivo. MATERIALS AND METHODS Three normal, nonanemic baboons were treated with decitabine subcutaneously (0.5 mg/kg/d) for 10 days. The effect of decitabine on globin chain synthesis and globin messenger RNA levels was measured in pre- and posttreatment bone marrow aspirates by biosynthetic radiolabeling with [(3)H] leucine followed by separation of globin chains by high-performance liquid chromatography, and real-time polymerase chain reaction, respectively. The effect on DNA methylation of the ɛ- and γ-globin gene promoters was determined by bisulfite sequence analysis. RESULTS Decitabine treatment of normal, nonanemic baboons induced similar increases in the γ/γ+β chain synthetic ratio and the γ/total β-like globin RNA ratio and also increased expression of ɛ-globin transcripts. Increased expression of ɛ- and γ-globin was associated with decreased DNA methylation of the ɛ- and γ-globin gene promoters. CONCLUSIONS Decitabine increases fetal hemoglobin in vivo by transcriptional activation of the γ-globin gene.
Collapse
Affiliation(s)
- Imo Akpan
- Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chin J, Singh M, Banzon V, Vaitkus K, Ibanez V, Kouznetsova T, Mahmud N, DeSimone J, Lavelle D. Transcriptional activation of the gamma-globin gene in baboons treated with decitabine and in cultured erythroid progenitor cells involves different mechanisms. Exp Hematol 2009; 37:1131-42. [PMID: 19576949 PMCID: PMC8728742 DOI: 10.1016/j.exphem.2009.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the mechanism(s) responsible for increased gamma-globin expression in vivo in decitabine-treated baboons and in vitro in cultured erythroid progenitor cells (EPC) from adult baboon bone marrow (BM). MATERIALS AND METHODS Fetal liver, adult BM erythroid cells pre- and post-decitabine, and cultured EPCs were analyzed for distribution of RNA polymerase II, histone acetylation, and histone H3 (lys4) trimethyl throughout the gamma-globin gene complex by chromatin immunoprecipitation. DNA methylation of the gamma-globin promoter was determined by bisulfite sequencing. Expression of the baboon Igamma- and Vgamma-globin chains was determined by high performance liquid chromatography (HPLC). Expression of BCL11A, a recently identified repressor of gamma-globin expression, was analyzed by Western blot. RESULTS Increased gamma-globin expression in decitabine-treated baboons and cultured EPC correlated with increased levels of RNA polymerase II, histone acetylation, and histone H3 (lys4) trimethyl associated with the gamma-globin gene consistent with a transcriptional activation mechanism. Cultured EPC expressed the Igamma- and Vgamma-globin chains in a pattern characteristic of fetal development. The level of DNA methylation of the gamma-globin gene promoter in EPC cultures was similar to BM erythroid cells from normal adult baboons. Different BCL11A isoforms were observed in BM erythroid cells and cultured EPC. CONCLUSION The mechanism responsible for increased gamma-globin expression in cultured EPC was unexpectedly not associated with increased DNA hypomethylation of the gamma-globin gene promoter compared to normal BM erythroid cells, in contrast to BM erythroid cells of decitabine-treated baboons. Rather, increased fetal hemoglobin in EPC cultures was associated with a fetal Igamma/Vgamma chain ratio and a difference in the size of the BCL11A protein compared to normal BM erythroid cells.
Collapse
Affiliation(s)
- Janet Chin
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Mahipal Singh
- Department of Animal Science and Molecular Biology, Fort Valley State University, Fort Valley, Ga., USA
| | - Virryan Banzon
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Kestis Vaitkus
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Vinzon Ibanez
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Tatiana Kouznetsova
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
| | - Joseph DeSimone
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill., USA
- Jesse Brown VA Medical Center, Chicago, Ill., USA
| |
Collapse
|
14
|
Hsu M, Richardson CA, Olivier E, Qiu C, Bouhassira EE, Lowrey CH, Fiering S. Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp Hematol 2009; 37:799-806.e4. [PMID: 19460472 DOI: 10.1016/j.exphem.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The regulation of the beta-globin switch remains undetermined, and understanding this mechanism has important benefits for clinical and basic science. Histone modifications regulate gene expression and this study determines the presence of three important histone modifications across the beta-globin locus in erythroblasts with different beta-like globin-expression profiles. Understanding the chromatin associated with weak gamma gene expression in bone marrow cells is an important objective, with the goal of ultimately inducing postnatal expression of weak gamma-globin to cure beta-hemoglobinopathies. MATERIALS AND METHODS These studies use uncultured primary fetal and bone marrow erythroblasts and human embryonic stem cell-derived primitive-like erythroblasts. Chromatin immunoprecipitation with antibodies against modified histones reveals DNA associated with such histones. Precipitated DNA is quantitated by real-time polymerase chain reaction for 40 sites across the locus. RESULTS Distribution of histone modifications differs at each developmental stage. The most highly expressed genes at each stage are embedded within large domains of modifications associated with expression (acetylated histone H3 [H3ac] and dimethyl lysine 4 of histone H3 [H3K4me2]). Moderately expressed genes have H3ac and H3K4me2 in the immediate area around the gene. Dimethyl lysine 9 of histone H3 (H3K9me2), a mark associated with gene suppression, is present at the epsilon and gamma genes in bone marrow cells, suggesting active suppression of these genes. CONCLUSION This study reveals complex patterns of histone modifications associated with highly expressed, moderately expressed, and unexpressed genes. Activation of gamma postnatally will likely require extensive modification of the histones in a large domain around the gamma genes.
Collapse
Affiliation(s)
- Mei Hsu
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03756, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 2009; 19:1044-56. [PMID: 19273619 DOI: 10.1101/gr.088773.108] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.
Collapse
Affiliation(s)
- Alayne L Brunner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fetal hemoglobin chemical inducers for treatment of hemoglobinopathies. Ann Hematol 2008; 88:505-28. [PMID: 19011856 DOI: 10.1007/s00277-008-0637-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/27/2008] [Indexed: 12/29/2022]
Abstract
The switch from fetal ((G)gamma and (A)gamma) to adult (beta and delta) globin gene expression occurs at birth, leading to the gradual replacement of HbF with HbA. Genetic regulation of this switch has been studied for decades, and the molecular mechanisms underlying this developmental change in gene expression have been in part elucidated. The understanding of the developmental regulation of gamma-globin gene expression was paralleled by the identification of a series of chemical compounds able to reactivate HbF synthesis in vitro and in vivo in adult erythroid cells. Reactivation of HbF expression is an important therapeutic option in patients with hemoglobin disorders, such as sickle cell anemia and beta-thalassemia. These HbF inducers can be grouped in several classes based on their chemical structures and mechanisms of action. Clinical studies with some of these agents have shown that they were effective, in a part of patients, in ameliorating the clinical condition. The increase in HbF in response to these drugs varies among patients with beta-thalassemia and sickle cell disease due to individual genetic determinants.
Collapse
|
17
|
The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development. Curr Top Dev Biol 2008; 82:85-116. [PMID: 18282518 DOI: 10.1016/s0070-2153(07)00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sequence complexity of the known vertebrate genomes alone is insufficient to account for the diversity between individuals of a species. Although our knowledge of vertebrate biology has evolved substantially with the growing compilation of sequenced genomes, understanding the temporal and spatial regulation of genes remains fundamental to fully exploiting this information. The importance of epigenetic factors in gene regulation was first hypothesized decades ago when biologists posited that methylation of DNA could heritably alter gene expression [Holliday and Pugh, 1975. Science 187(4173), 226-232; Riggs, 1975. Cytogenet. and Cell Genet.14(1), 9-25; Scarano et al., 1967. Proc. Natl. Acad. Sci. USA 57(5), 1394-1400)]. It was subsequently shown that vertebrate DNA methylation, almost exclusively at the 5' position of cytosine in the dinucleotide CpG, played a role in a number of processes including embryonic development, genetic imprinting, cell differentiation, and tumorigenesis. At the time of this writing, a large and growing list of genes is known to exhibit DNA methylation-dependent regulation, and we understand in some detail the mechanisms employed by cells in using methylation as a regulatory modality. In this context, we revisit one of the original systems in which the role of DNA methylation in vertebrate gene regulation during development was described and studied: erythroid cells. We briefly review the recent advances in our understanding of DNA methylation and, in particular, its regulatory role in red blood cells during differentiation and development. We also address DNA methylation as a component of erythroid chromatin architecture, and the interdependence of CpG methylation and histone modification.
Collapse
|
18
|
Yin W, Barkess G, Fang X, Xiang P, Cao H, Stamatoyannopoulos G, Li Q. Histone acetylation at the human beta-globin locus changes with developmental age. Blood 2007; 110:4101-7. [PMID: 17881636 PMCID: PMC2190615 DOI: 10.1182/blood-2007-05-091256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To delineate the relationship between epigenetic modifications and hemoglobin switching, we compared the pattern of histone acetylation and pol II binding across the beta-globin locus at fetal and adult stages of human development. To make this comparison possible, we introduced an external control into experimental samples in chromatin immunoprecipitation (ChIP) assays. Using this common standard, we found that the locus control region (LCR) was acetylated to the same level at all stages, whereas acetylation levels at the individual gene regions correlated with the state of transcription. In the active genes, the promoters were less acetylated compared with the coding regions. Furthermore, all globin promoters were acetylated to a similar level irrespective of the state of transcription. However, after correction for the loss of nucleosomes, the level of acetylation per histone at the active gamma and beta promoters was 5- to 7-fold greater than that at the inactive epsilon promoter. Although the histone acetylation level within the LCR was developmentally stable, pol II binding in fetal erythroblasts was 2- to 3-fold greater than that in adult erythroblasts. These results demonstrate that dynamic changes in histone acetylation and pol II take place as the human beta-globin gene region undergoes its developmental switches.
Collapse
Affiliation(s)
- Wenxuan Yin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Mabaera R, Richardson CA, Johnson K, Hsu M, Fiering S, Lowrey CH. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation. Blood 2007; 110:1343-52. [PMID: 17456718 PMCID: PMC1939907 DOI: 10.1182/blood-2007-01-068635] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying the human fetal-to-adult beta-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human gamma- and beta-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at -162 of the gamma promoter and -126 of the beta promoter are hypomethylated in ABM and FL, respectively. We also studied gamma-globin promoter methylation during in vitro differentiation of erythroid cells. The gamma promoters are initially hypermethylated in CD34(+) cells. The upstream gamma promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient gamma-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human gamma- and beta-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human beta-globin locus gene switching.
Collapse
Affiliation(s)
- Rodwell Mabaera
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | |
Collapse
|
20
|
Singh M, Lavelle D, Vaitkus K, Mahmud N, Hankewych M, DeSimone J. The gamma-globin gene promoter progressively demethylates as the hematopoietic stem progenitor cells differentiate along the erythroid lineage in baboon fetal liver and adult bone marrow. Exp Hematol 2007; 35:48-55. [PMID: 17198873 DOI: 10.1016/j.exphem.2006.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the difference in gamma-globin gene promoter methylation in terminal erythroblasts at the fetal and adult stages of development is a result of fetal stage-specific demethylation or adult stage-specific de novo methylation during erythropoiesis. MATERIALS AND METHODS Fetal liver- (FL, n = 2) and adult bone marrow- (ABM, n = 3) derived hematopoietic stem/progenitor cells and mature erythroblasts were purified by passage through a Miltenyi Magnetic Column followed by fluorescein-activated cell sorting (FACS) into subpopulations, defined by expression of CD34 and CD36 antigens. CD34(+)CD36(-), CD34(+)CD36(+), and CD34(-)CD36(+) subpopulations were purified by FACS and their degree of differentiation verified using the colony-forming cell assay. The methylation pattern of 5 CpG sites in the gamma-globin promoter region of these purified cell populations was determined using bisulfite sequencing. RESULTS The gamma-globin promoter was highly methylated in the earliest stage of hematopoietic stem progenitor cells (CD34(+)CD36(-)) and methylation progressively decreased as erythroid differentiation progressed in FL and appears so in ABM as well. CONCLUSIONS These data support a model in which differences in the methylation pattern of the gamma-globin gene in differentiating erythroblasts at different stages of development is the result of fetal stage-specific demethylation associated with transcriptional activation, rather than de novo methylation in the adults. The difference in the extent of gamma-globin gene demethylation in FL and ABM is correlated with the difference in gamma-globin expression at these developmental stages.
Collapse
Affiliation(s)
- Mahipal Singh
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|