1
|
Miura T, Fukumoto Y, Morii M, Honda T, Yamaguchi N, Nakayama Y, Yamaguchi N. Src family kinases maintain the balance between replication stress and the replication checkpoint. Cell Biol Int 2015. [PMID: 26194897 DOI: 10.1002/cbin.10517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progression of DNA replication is tightly controlled by replication checkpoints to ensure the accurate and rapid duplication of genetic information. Upon replication stress, the replication checkpoint slows global DNA replication by inhibiting the late-firing origins and by slowing replication fork progression. Activation of the replication checkpoint has been studied in depth; however, little is known about the termination of the replication checkpoint. Here, we show that Src family kinases promote the recovery from replication checkpoints. shRNA knockdown of a Src family kinase, Lyn, and acute chemical inhibition of Src kinases prevented inactivation of Chk1 after removal of replication stress. Consistently, Src inhibition slowed resumption of DNA replication, after the removal of replication blocks. The effect of Src inhibition was not observed in the presence of an ATM/ATR inhibitor caffeine. These data indicate that Src kinases promote the resumption of DNA replication by suppressing ATR-dependent replication checkpoints. Surprisingly, the resumption of replication was delayed by caffeine. In addition, Src inhibition delayed recovery from replication fork collapse. We propose that Src kinases maintain the balance between replication stress and the activity of the replication checkpoint.
Collapse
Affiliation(s)
- Takahito Miura
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Yasunori Fukumoto
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Mariko Morii
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Takuya Honda
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Noritaka Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba , 260-8675, Japan
| |
Collapse
|
2
|
Zhou TT, He L, Yan M, Zhang LY, He JG, Rao XP. Tyrosine kinase inhibitory activity of dehydroabietylamine derivatives tested by homogeneous time-resolved fluorescence based high throughput screening model. Chin J Nat Med 2013; 11:506-13. [PMID: 24359775 DOI: 10.1016/s1875-5364(13)60092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Indexed: 10/25/2022]
Abstract
Protein tyrosine kinases (PTKs) are attractive targets in searching for therapeutic agents against many diseases. In this study, a series of dehydroabietylamine derivatives were first determined to show PTK inhibitory activity using a high-throughput screening (HTS) method based on homogeneous time-resolved fluorescence (HTRF) technology. The structure-activity relationships of the dehydroabietylamine derivatives were established, and it was found that the compounds with a nitrogen-containing side chain had better inhibitory activity. Further studies showed that the compounds substituted with halogen in the phenyl ring resulted in higher inhibitory activity on the epidermal growth factor receptor (EGFR), and can be a guide to modify the structure of dehydroabietylamine derivatives. Dehydroabietylamine derivatives might be a new class of multi-targeted and effective PTK inhibitors with structure modifications.
Collapse
Affiliation(s)
- Tao-Tao Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Yan
- National Drug Screening Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- National Drug Screening Laboratory, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guo He
- Department of Neurosurgery, Chongqing Red Cross Hospital, Chongqing 400020, China
| | - Xiao-Ping Rao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|
3
|
Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs 2012; 21:921-947. [PMID: 22612424 DOI: 10.1517/13543784.2012.685650] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the last few years, several tyrosine kinase inhibitors (TKIs) have been synthesized and become available for preclinical studies and clinical trials. This article summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity, as well as the emerging role of TKIs in lymphoid malignancies, allergic diseases, and autoimmune disorders. AREAS COVERED A literature review was conducted of the MEDLINE database PubMed for articles in English. Publications from 2000 through January 2012 were scrutinized. The search terms used were Bruton's tyrosine kinase (Btk) inhibitors, PCI-32765, GDC-0834, LFM-A13, AVL-101, AVL-292, spleen tyrosine kinase (Syk) inhibitors, R343, R406, R112, R788, fostamatinib, BAY-61-3606, C-61, piceatannol, Lyn, imatinib, nilotinib, bafetinib, dasatinib, GDC-0834, PP2, SU6656 in conjunction with lymphoid malignancy, NHL, CLL, autoimmune disease, allergic disease, asthma, and rheumatoid arthritis. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION The use of TKIs, especially inhibitors of Btk, Syk, and Lyn, is a promising new strategy for targeted treatment of B-cell lymphoid malignancies, autoimmune disorders and allergic diseases. However, definitive data from ongoing and future clinical trials will aid in better defining the status of TKIs in the treatment of these disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| | | |
Collapse
|
4
|
Sánchez-Bailón MP, Calcabrini A, Gómez-Domínguez D, Morte B, Martín-Forero E, Gómez-López G, Molinari A, Wagner KU, Martín-Pérez J. Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal 2012; 24:1276-86. [DOI: 10.1016/j.cellsig.2012.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Prakash CR, Theivendren P, Raja S. Indolin-2-Ones in Clinical Trials as Potential Kinase Inhibitors: A Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/pp.2012.31010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Tamm C, Galitó SP, Annerén C. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors. Exp Cell Res 2011; 318:336-49. [PMID: 22197704 DOI: 10.1016/j.yexcr.2011.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
7
|
Yoshida K, Ono M, Bito H, Mikami T, Sawada H. Plasmodium induced by SU6656, an Src family kinase inhibitor, is accompanied by a contractile ring defect. Cell Biochem Funct 2011; 30:33-40. [PMID: 22034098 DOI: 10.1002/cbf.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/01/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
We have shown that SU6656, a potent Src family kinase inhibitor, has the ability to induce multinucleation at a high frequency in diverse cells: rat skin fibroblasts, bone marrow adherent cells, 5F9A mesenchymal stem cell-like clones, 2C5 tracheal epithelial cells and MDCK epithelial cells from dog kidney. To gain insight into the mechanism of multinucleation, we observed the process by time-lapse and confocal microscopy. These multinuclei generally seem to exist independently in one cell without any connections with each other. By time-lapse microscopy, multinucleated cells were found to be formed through the mechanism of plasmodium: karyokinesis without cytokinesis. The observation of EGFP-actin transfected cells by time-lapse confocal laser scanning microscopy suggested that plasmodium occurred with deficient contractile ring formation. Although we examined the differentiation of these cells, the multinucleated cells could not be categorized into any type of cell in vivo known to exhibit multinuclei.
Collapse
Affiliation(s)
- Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | | | | | | | | |
Collapse
|
8
|
Ting CM, Wong CKC, Wong RNS, Lo KW, Lee AWM, Tsao GSW, Lung ML, Mak NK. Role of STAT3/5 and Bcl-2/xL in 2-methoxyestradiol-induced endoreduplication of nasopharyngeal carcinoma cells. Mol Carcinog 2011; 51:963-72. [PMID: 22006341 DOI: 10.1002/mc.20867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 09/14/2011] [Indexed: 01/08/2023]
Abstract
2-methoxyestradiol (2ME2), an endogenous metabolite of 17-β-estradiol, has been shown to induce apoptosis and cell cycle arrest in various tumor models. We have previously shown that 2ME2 induced endoreduplication in a well-differentiated nasopharyngeal carcinoma (NPC) HK-1 and a poorly differentiated C666-1 cell line. In the present study, we studied the survival factors involved in 2ME2-induced endoreduplicating NPC cells. In the HK-1 cells, knockdown of BcL-xL expression by siRNA resulted in the reduction of endoreduplication and an increase in the percentage of apoptosis. Further mechanistic study revealed that 2ME2 enhanced the expression of the phosphorylated form of STAT5 (p-STAT5-Y694), but not p-STAT3 (Y705) and p-STAT3 (S727), in the nucleus of HK-1 cells. Pre-treatment of cells with JAK/STAT inhibitor AG490 and STAT5 inhibitor resulted not only in the reduced expression of Bcl-xL, but also reduced the percentage of endoreduplicating cells. In contrast, 2ME2 enhanced the expression of p-STAT3 in the poorly differentiated C666-1 cells. Pharmacological inhibition of STAT3 or Bcl-2/xL resulted in a decrease in endoreduplication of C666-1 cells. Taken together, the expression of p-STAT5 and p-STAT3 was upregulated in 2ME2-induced endoreduplicating HK-1 and C666-1 cells, respectively. Combination of 2ME2 with Bcl-2/xL inhibitor is a novel strategy to reduce the formation of endoreduplicating cells during chemotherapeutic treatment of NPC. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C M Ting
- Department of Biology, Hong Kong Baptist University, State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu W, Lee CY, Johnson RL, Wichterman J, Huang R, DePamphilis ML. An image-based, high-throughput screening assay for molecules that induce excess DNA replication in human cancer cells. Mol Cancer Res 2011; 9:294-310. [PMID: 21257818 PMCID: PMC3060295 DOI: 10.1158/1541-7786.mcr-10-0570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown DNA re-replication can be induced in cells derived from human cancers under conditions in which it is not possible for cells derived from normal tissues. Because DNA re-replication induces cell death, this strategy could be applied to the discovery of potential anticancer therapeutics. Therefore, an imaging assay amenable to high-throughput screening was developed that measures DNA replication in excess of four genomic equivalents in the nuclei of intact cells and indexes cell proliferation. This assay was validated by screening a library of 1,280 bioactive molecules on both normal and tumor-derived cells where it proved more sensitive than current methods for detecting excess DNA replication. This screen identified known inducers of excess DNA replication, such as inhibitors of microtubule dynamics, and novel compounds that induced excess DNA replication in both normal and cancer cells. In addition, two compounds were identified that induced excess DNA replication selectively in cancer cells and one that induced endocycles selectively in cancer cells. Thus, this assay provides a new approach to the discovery of compounds useful for investigating the regulation of genome duplication and for the treatment of cancer.
Collapse
Affiliation(s)
- Wenge Zhu
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753
| | - Chrissie Y. Lee
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753
| | - Ronald L. Johnson
- NIH Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20892-3370
| | - Jennifer Wichterman
- NIH Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20892-3370
| | - Ruili Huang
- NIH Chemical Genomics Center, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20892-3370
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753
| |
Collapse
|