1
|
Sellers RS, Ramaiah L, Hong SJ, Nambiar P, Jacquinet E, Naidu S. Session 4: mRNA and Self-Amplifying RNA (saRNA): Opportunities for Disease Prevention and Therapy. Toxicol Pathol 2024; 52:545-552. [PMID: 39578668 DOI: 10.1177/01926233241298572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The unprecedented speed of developing vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has propelled mRNA technologies into the public eye. The versatility of mRNA technology, often referred to as "plug and play," offers immense promise for rapidly updating vaccines to address newer variants of respiratory diseases and combat emerging infectious diseases and lethal pathogens, such as the Ebolavirus. However, the potential applications of mRNA technology extend well beyond prophylactic vaccines. This session explored the two primary mRNA platforms: nonreplicating mRNA and self-amplifying mRNA (variably referred to as saRNA, samRNA, or SAM). Presentation topics were on current research efforts aimed at broadening the applications of mRNA modalities beyond vaccines. Topics included opportunities for delivering mRNA via intra-tumoral and inhalational routes, immunological and systemic inflammatory responses elicited by these modalities, and regulatory considerations involved in the development and licensing of these technologies.
Collapse
Affiliation(s)
- Rani S Sellers
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lila Ramaiah
- Johnson and Johnson, New Brunswick, New Jersey, USA
| | | | | | | | - Shan Naidu
- Moderna, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Hauguel T, Sharma A, Mastrocola E, Lowry S, Maddur MS, Hu CH, Rajput S, Vitsky A, Choudhary S, Manickam B, De Souza I, Chervona Y, Moreno RM, Abdon C, Falcao L, Tompkins K, Illenberger D, Smith R, Meng F, Shi S, Efferen KS, Markiewicz V, Umemoto C, Hu J, Chen W, Scully I, Rohde CM, Anderson AS, Suphaphiphat Allen P. Preclinical immunogenicity and safety of hemagglutinin-encoding modRNA influenza vaccines. NPJ Vaccines 2024; 9:183. [PMID: 39375384 PMCID: PMC11488230 DOI: 10.1038/s41541-024-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Seasonal epidemics of influenza viruses are responsible for a significant global public health burden. Vaccination remains the most effective way to prevent infection; however, due to the persistence of antigenic drift, vaccines must be updated annually. The selection of vaccine strains occurs months in advance of the influenza season to allow adequate time for production in eggs. RNA vaccines offer the potential to accelerate production and improve efficacy of influenza vaccines. We leveraged the nucleoside-modified RNA (modRNA) platform technology and lipid nanoparticle formulation process of the COVID-19 mRNA vaccine (BNT162b2; Comirnaty®) to create modRNA vaccines encoding hemagglutinin (HA) (modRNA-HA) for seasonal human influenza strains and evaluated their preclinical immunogenicity and toxicity. In mice, a monovalent modRNA vaccine encoding an H1 HA demonstrated robust antibody responses, HA-specific Th1-type CD4+ T cell responses, and HA-specific CD8+ T cell responses. In rhesus and cynomolgus macaques, the vaccine exhibited durable functional antibody responses and HA-specific IFN-γ+ CD4+ T cell responses. Immunization of mice with monovalent, trivalent, and quadrivalent modRNA-HA vaccines generated functional antibody responses targeting the seasonal influenza virus(es) encoded in the vaccines that were greater than, or similar to, those of a licensed quadrivalent influenza vaccine. Monovalent and quadrivalent modRNA-HA vaccines were well-tolerated by Wistar Han rats, with no evidence of systemic toxicity. These nonclinical immunogenicity and safety data support further evaluation of the modRNA-HA vaccines in clinical studies.
Collapse
Affiliation(s)
- Teresa Hauguel
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Amy Sharma
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Emily Mastrocola
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Susan Lowry
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Mohan S Maddur
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cheng Hui Hu
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Swati Rajput
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Allison Vitsky
- Drug Safety Research & Development, Pfizer Inc., La Jolla, CA, USA
| | | | | | - Ivna De Souza
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Yana Chervona
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Charisse Abdon
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Larissa Falcao
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Kristin Tompkins
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Rachel Smith
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Fanyu Meng
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Shuai Shi
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | | | - Cinthia Umemoto
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Jianfang Hu
- Global Biometrics & Data Management, Pfizer Inc., Collegeville, PA, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Ingrid Scully
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cynthia M Rohde
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | | |
Collapse
|
3
|
Rohde CM, Lindemann C, Giovanelli M, Sellers RS, Diekmann J, Choudhary S, Ramaiah L, Vogel AB, Chervona Y, Muik A, Sahin U. Toxicological Assessments of a Pandemic COVID-19 Vaccine-Demonstrating the Suitability of a Platform Approach for mRNA Vaccines. Vaccines (Basel) 2023; 11:417. [PMID: 36851293 PMCID: PMC9965811 DOI: 10.3390/vaccines11020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The emergence of SARS-CoV-2 at the end of 2019 required the swift development of a vaccine to address the pandemic. Nonclinical GLP-compliant studies in Wistar Han rats were initiated to assess the local tolerance, systemic toxicity, and immune response to four mRNA vaccine candidates encoding immunogens derived from the spike (S) glycoprotein of SARS-CoV-2, encapsulated in lipid nanoparticles (LNPs). Vaccine candidates were administered intramuscularly once weekly for three doses at 30 and/or 100 µg followed by a 3-week recovery period. Clinical pathology findings included higher white blood cell counts and acute phase reactant concentrations, lower platelet and reticulocyte counts, and lower RBC parameters. Microscopically, there was increased cellularity (lymphocytes) in the lymph nodes and spleen, increased hematopoiesis in the bone marrow and spleen, acute inflammation and edema at the injection site, and minimal hepatocellular vacuolation. These findings were generally attributed to the anticipated immune and inflammatory responses to the vaccines, except for hepatocyte vacuolation, which was interpreted to reflect hepatocyte LNP lipid uptake, was similar between candidates and resolved or partially recovered at the end of the recovery phase. These studies demonstrated safety and tolerability in rats, supporting SARS-CoV-2 mRNA-LNP vaccine clinical development.
Collapse
Affiliation(s)
- Cynthia M. Rohde
- Drug Safety Research and Development, Pfizer Worldwide Research, Development & Medical, Pfizer, Inc., Pearl River, NY 10965, USA
| | | | - Michael Giovanelli
- Drug Safety Research and Development, Pfizer Worldwide Research, Development & Medical, Pfizer, Inc., Groton, CT 06340, USA
| | - Rani S. Sellers
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Shambhunath Choudhary
- Drug Safety Research and Development, Pfizer Worldwide Research, Development & Medical, Pfizer, Inc., Pearl River, NY 10965, USA
| | - Lila Ramaiah
- Drug Safety Research and Development, Pfizer Worldwide Research, Development & Medical, Pfizer, Inc., Pearl River, NY 10965, USA
| | | | - Yana Chervona
- Drug Safety Research and Development, Pfizer Worldwide Research, Development & Medical, Pfizer, Inc., Pearl River, NY 10965, USA
| | | | | |
Collapse
|
4
|
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023; 19:897-915. [PMID: 36778129 PMCID: PMC9910000 DOI: 10.7150/ijbs.81609] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyun Shi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenfeng Feng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 39216, Jackson, Mississippi, USA
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
A Nano Erythropoiesis Stimulating Agent (Nano-ESA) for the Treatment of Anemia and Associated Disorders. iScience 2022; 25:105021. [PMID: 36111254 PMCID: PMC9468392 DOI: 10.1016/j.isci.2022.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
|
6
|
Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nat Commun 2021; 12:1645. [PMID: 33712594 PMCID: PMC7955080 DOI: 10.1038/s41467-021-21938-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI. Debilitating anemias in chronic diseases can result from deficient iron delivery to red cell precursors. Here, the authors show how this deficiency damages the cytoskeletal framework of progenitor cells and identify a targeted strategy for cytoskeletal repair, leading to anemia correction.
Collapse
|
7
|
Rund D. Intravenous iron: do we adequately understand the short- and long-term risks in clinical practice? Br J Haematol 2020; 193:466-480. [PMID: 33216989 DOI: 10.1111/bjh.17202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Intravenous (IV) iron as a therapeutic agent is often administered but not always fully understood. The benefits of IV iron are well proven in many fields, particularly in nephrology. IV iron is beneficial not only for true iron deficiency but also for iron-restricted anaemia (functional iron deficiency). Yet, the literature on intravenous iron has many inconsistencies regarding its adverse effects. Over the last several years, newer forms of iron have been developed, leading to the more regular use of iron and in larger doses. This review will summarize some of the older and newer literature regarding the differences among iron products, including the mechanisms and frequency of their adverse events (AEs). The pathway and frequency of an underrecognized adverse event (hypophosphataemia) will be discussed. Recent insights on infection risk and iron handling by macrophages are examined. Potential but presently unproven risks of iron overload due to IV iron are discussed. The impact of these on the risk:benefit ratio and dosing of intravenous iron are considered in different clinical settings, including pregnancy and cancer. IV iron is an essential component of the therapy of anaemia and understanding these issues will enable more informed treatment decisions and knowledgeable use of these drugs.
Collapse
Affiliation(s)
- Deborah Rund
- Hebrew University-Hadassah Medical Organization, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
8
|
Yuan R, Ding X, Tan X, Hou Y. Loss of FZO1 gene results in changes of cell dynamics in fission yeast. Int J Mol Med 2020; 46:2194-2206. [PMID: 33125111 PMCID: PMC7595653 DOI: 10.3892/ijmm.2020.4752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission and fusion dynamics are critical cellular processes, and abnormalities in these processes are associated with severe human disorders, such as Beckwith-Wiedemann syndrome, neurodegenerative diseases, Charcot-Marie-Tooth disease type 6, multiple symmetric lipomatosis and microcephaly. Fuzzy onions protein 1 (Fzo1p) regulates mitochondrial outer membrane fusion. In the present study, Schizosaccharomyces pombe (S. pombe) was used to explore the effect of FZO1 gene deletion on cell dynamics in mitosis. The mitochondrial morphology results showed that the mitochondria appeared to be fragmented and tubular in wild-type cells; however, they were observed to accumulate in fzo1Δ cells. The FZO1 gene deletion was demonstrated to result in slow proliferation, sporogenesis defects, increased microtubule (MT) number and actin contraction defects in S. pombe. The FZO1 gene deletion also affected the rate of spindle elongation and phase time at the metaphase and anaphase, as well as spindle MT organization. Live-cell imaging was performed on mutant strains to observe three distinct kinetochore behaviors (normal, lagging and mis-segregation), as well as abnormal spindle breakage. The FZO1 gene deletion resulted in coenzyme and intermediate metabolite abnormalities as determined via metabolomics analysis. It was concluded that the loss of FZO1 gene resulted in deficiencies in mitochondrial dynamics, which may result in deficiencies in spindle maintenance, chromosome segregation, spindle breakage, actin contraction, and coenzyme and intermediate metabolite levels.
Collapse
Affiliation(s)
- Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiumei Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
9
|
Khalil S, Delehanty L, Grado S, Holy M, White Z, Freeman K, Kurita R, Nakamura Y, Bullock G, Goldfarb A. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med 2017; 215:661-679. [PMID: 29282252 PMCID: PMC5789406 DOI: 10.1084/jem.20170396] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/02/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Iron deficiency causes resistance in erythroid progenitors against proliferative but not survival signals of erythropoietin. Khalil et al. link this response to the down-regulation of Scribble, an orchestrator of receptor trafficking and signaling. With iron deprivation, transferrin receptor 2 drives Scribble degradation, reconfiguring erythropoietin receptor function. Iron-restricted human anemias are associated with the acquisition of marrow resistance to the hematopoietic cytokine erythropoietin (Epo). Regulation of Epo responsiveness by iron availability serves as the basis for intravenous iron therapy in anemias of chronic disease. Epo engagement of its receptor normally promotes survival, proliferation, and differentiation of erythroid progenitors. However, Epo resistance caused by iron restriction selectively impairs proliferation and differentiation while preserving viability. Our results reveal that iron restriction limits surface display of Epo receptor in primary progenitors and that mice with enforced surface retention of the receptor fail to develop anemia with iron deprivation. A mechanistic pathway is identified in which erythroid iron restriction down-regulates a receptor control element, Scribble, through the mediation of the iron-sensing transferrin receptor 2. Scribble deficiency reduces surface expression of Epo receptor but selectively retains survival signaling via Akt. This mechanism integrates nutrient sensing with receptor function to permit modulation of progenitor expansion without compromising survival.
Collapse
Affiliation(s)
- Shadi Khalil
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Lorrie Delehanty
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Stephen Grado
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Maja Holy
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Zollie White
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Katie Freeman
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.,Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.,Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Grant Bullock
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Adam Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
10
|
Aurich A, Hofmann J, Oltrogge R, Wecks M, Gläser R, Blömer L, Mauersberger S, Müller RA, Sicker D, Giannis A. Improved Isolation of Microbiologically Produced (2R,3S)-Isocitric Acid by Adsorption on Activated Carbon and Recovery with Methanol. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Aurich
- Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jörg Hofmann
- Institute of Nonclassical Chemistry e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Robert Oltrogge
- Institute of Nonclassical Chemistry e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Mike Wecks
- Institute of Nonclassical Chemistry e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Roger Gläser
- Institute of Nonclassical Chemistry e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Laura Blömer
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Stephan Mauersberger
- Institute of Microbiology, Technical University of Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Roland A. Müller
- Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Dieter Sicker
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Athanassios Giannis
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life 2017; 69:399-413. [DOI: 10.1002/iub.1629] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- George Papanikolaou
- Department of Nutrition and DieteticsSchool of Health Science and Education, Harokopion UniversityAthens Greece
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of MedicineMcGill UniversityMontreal Quebec Canada
| |
Collapse
|
12
|
Ma J, Li R, Liu Y, Qu G, Liu J, Guo W, Song H, Li X, Liu Y, Xia T, Yan B, Liu S. Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portal-of-Entry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603830. [PMID: 28195425 DOI: 10.1002/smll.201603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Although numerous toxicological studies have been performed on carbon nanotubes (CNTs), a few studies have investigated their secondary and indirect effects beyond the primary target tissues/organs. Here, a cascade of events are investigated: the initiating event and the subsequent key events necessary for the development of phenotypes, namely CNT-induced pro-inflammatory effects on iron homeostasis and red blood cell formation, which are linked to anemia of inflammation (AI). A panel of CNTs are prepared including pristine multiwall CNTs (P-MWCNTs), aminated MWCNTs (MWCNTs-NH2 ), polyethylene glycol MWCNTs (MWCNTs-PEG), polyethyleneimine MWCNTs (MWCNTs-PEI), and carboxylated MWCNTs (MWCNTs-COOH). It has been demonstrated that all CNT materials provoke inflammatory cytokine interleukin-6 (IL-6) production and stimulate hepcidin induction, associated with disordered iron homeostasis, irrespective of exposure routes including intratracheal, intravenous, and intraperitoneal administration. Meanwhile, PEG and COOH modifications can ameliorate the activation of IL-6-hepcidin signaling. Long-term exposure of MWCNTs results in AI and extramedullary erythropoiesis. Thus, an adverse outcome pathway is identified: MWCNT exposure leads to inflammation, hepatic hepcidin induction, and disordered iron metabolism. Together, the combined data depict the hazardous secondary toxicity of CNTs in incurring anemia through inflammatory pathway. This study will also open a new avenue for future investigations on CNT-induced indirect and secondary adverse effects.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinghong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yajun Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Tian Xia
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, China
| | - Bing Yan
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|