1
|
Ferreira CS, Francisco Junior RDS, Gerber AL, Guimarães APDC, de Carvalho FAA, Dos Reis BCS, Pinto-Mariz F, de Souza MS, de Vasconcelos ZFM, Goudouris ES, Vasconcelos ATR. Genetic screening in a Brazilian cohort with inborn errors of immunity. BMC Genom Data 2023; 24:47. [PMID: 37592284 PMCID: PMC10433585 DOI: 10.1186/s12863-023-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.
Collapse
Affiliation(s)
- Cristina Santos Ferreira
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ronaldo da Silva Francisco Junior
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara Carvalho Santos Dos Reis
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernanda Pinto-Mariz
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Monica Soares de Souza
- Allergy and Immunology Sector of the Pediatric Service of the Federal Hospital of Rio de Janeiro State (HFSE) - Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratory of High Complexity of the Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ekaterini Simões Goudouris
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Sun B, Zhu Z, Hui X, Sun J, Wang W, Ying W, Zhou Q, Yao H, Hou J, Wang X. Variant Type X91 + Chronic Granulomatous Disease: Clinical and Molecular Characterization in a Chinese Cohort. J Clin Immunol 2022; 42:1564-1579. [PMID: 35796921 DOI: 10.1007/s10875-022-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE We aimed to report the clinical and immunological characteristics of variant type X91+ chronic granulomatous disease (CGD) in a Chinese cohort. METHODS The clinical manifestations and immunological phenotypes of patients with X91+ CGD were collected. A dihydrorhodamine (DHR) analysis was performed to evaluate neutrophil function. Gp91phox protein expression was determined using extracellular staining with the monoclonal antibody (mAb) 7D5 and flow cytometry. RESULTS Patients with X91+ CGD accounted for 8% (7/85) of all patients with CGD. The median age of onset in the seven patients with X91+ CGD was 4 months. Six patients received the BCG vaccine, and 50% (3/6) had probable BCG infections. Mycobacterium tuberculosis infection was prominent. The most common sites of infection were the lung (6/7), lymph nodes (5/7), and soft tissue (3/7). Two patients experienced recurrent oral ulcers. The stimulation index (SI) of the patients with X91+ CGD ranged widely from 1.9 to 67.3. The difference in the SI among the three groups of patients (X91+ CGD, X91- CGD, and X910 CGD) was statistically significant (P = 0.0071). The three groups showed no significant differences in onset age, diagnosis age, or severe infection frequency. CYBB mutations associated with X91+ CGD were commonly located in the second transmembrane or intracellular regions. Three novel X91+ CGD-related mutations (c.1462-2 A > T, c.1243C > T, and c.925G > A) were identified. CONCLUSIONS Variant type X91+ CGD may result in varied clinical manifestations. Moreover, the laboratory findings might indicate a moderate neutrophil SI. We should deepen our understanding of variant X91+ CGD to prevent missed diagnoses.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Zeyu Zhu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.,Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Department of Pediatrics, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
| |
Collapse
|
3
|
Çitli Ş, Serdaroglu E. Maternal Germline Mosaicism of a de Novo TUBB2B Mutation Leads to Complex Cortical Dysplasia in Two Siblings. Fetal Pediatr Pathol 2022; 41:155-165. [PMID: 32281916 DOI: 10.1080/15513815.2020.1753270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Complex cortical dysplasia with other brain malformations-7 (a.k.a. polymicrogyria) caused by mutations in TUBB2B gene is a clinically heterogeneous condition. Case report: We report two siblings with polymicrogyria. Brain MRI showed polymicrogyria, small brainstem, thin corpus callosum and fused basal ganglia. Karyotypes and chromosomal microarray analysis were normal. By whole exome sequencing, there were a de novo variant of c.728C > T (p.P243L) in both siblings and a common single nucleotide polymorphism (SNP) (c.718C > T) in both siblings and the mother. Seminal DNA analysis obtained from father was normal. Conclusion: Maternal germline mosaicism was considered because the sequencing result of the father's sperm was normal, two siblings had the same disease, and both patients and mother had the same SNP.
Collapse
Affiliation(s)
- Şenol Çitli
- Medical Genetics, Gaziosmanpasa University Medical Faculty, Tokat, Turkey
| | | |
Collapse
|
4
|
Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells Mol Dis 2021; 90:102587. [PMID: 34175765 DOI: 10.1016/j.bcmd.2021.102587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide and subsequently formed other reactive oxygen species (ROS) are instrumental in killing phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients in Europe and in about 20% in countries with a high ratio of parental consanguinity. This article lists all mutations identified in CYBB and should therefore help in genetic counseling of X-CGD patients' families. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of disease-causing mutations. In addition, we also include some mutations in G6PD, the gene on the X chromosome that encodes glucose-6-phosphate dehydrogenase, because inactivity of this enzyme may lead to shortage of NADPH and thus to insufficient activity of NADPH oxidase. Severe G6PD deficiency can induce CGD-like symptoms.
Collapse
|
5
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Paz S, Ritchie A, Mauer C, Caputi M. The RNA binding protein SRSF1 is a master switch of gene expression and regulation in the immune system. Cytokine Growth Factor Rev 2020; 57:19-26. [PMID: 33160830 DOI: 10.1016/j.cytogfr.2020.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Serine/Arginine splicing factor 1 (SRSF1) is an RNA binding protein abundantly expressed in most tissues. The pleiotropic functions of SRSF1 exert multiple roles in gene expression by regulating major steps in transcription, processing, export through the nuclear pores and translation of nascent RNA transcripts. The aim of this review is to highlight recent findings in the functions of this protein and to describe its role in immune system development, functions and regulation.
Collapse
Affiliation(s)
- Sean Paz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Anastasia Ritchie
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Christopher Mauer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States.
| |
Collapse
|
7
|
Baeza-Centurion P, Miñana B, Valcárcel J, Lehner B. Mutations primarily alter the inclusion of alternatively spliced exons. eLife 2020; 9:59959. [PMID: 33112234 PMCID: PMC7673789 DOI: 10.7554/elife.59959] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.
Collapse
Affiliation(s)
- Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Belén Miñana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
8
|
Nazarian RM, Lilly E, Gavino C, Hamilos DL, Felsenstein D, Vinh DC, Googe PB. Novel
CARD9
mutation in a patient with chronic invasive dermatophyte infection (tinea profunda). J Cutan Pathol 2019; 47:166-170. [DOI: 10.1111/cup.13574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/10/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Rosalynn M. Nazarian
- Department of PathologyMassachusetts General Hospital and Harvard Medical School Boston Massachusetts
| | - Evelyn Lilly
- Department of DermatologyMassachusetts General Hospital and Harvard Medical School Boston Massachusetts
| | - Christina Gavino
- Department of Medicine, McGill University Health Center, and Infectious Disease Susceptibility ProgramResearch Institute‐McGill University Health Centre Montreal Quebec Canada
| | - Daniel L. Hamilos
- Department of MedicineDivision of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School Boston Massachusetts
| | - Donna Felsenstein
- Department of MedicineInfectious Disease Unit, Massachusetts General Hospital and Harvard Medical School Boston Massachusetts
| | - Donald C. Vinh
- Department of Medicine, McGill University Health Center, and Infectious Disease Susceptibility ProgramResearch Institute‐McGill University Health Centre Montreal Quebec Canada
| | - Paul B. Googe
- Department of DermatologyUniversity of North Carolina at Chapel Hill Chapel Hill North Carolina
| |
Collapse
|
9
|
Sequence and Evolutionary Features for the Alternatively Spliced Exons of Eukaryotic Genes. Int J Mol Sci 2019; 20:ijms20153834. [PMID: 31390737 PMCID: PMC6695735 DOI: 10.3390/ijms20153834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing of pre-mRNAs is a crucial mechanism for maintaining protein diversity in eukaryotes without requiring a considerable increase of genes in the number. Due to rapid advances in high-throughput sequencing technologies and computational algorithms, it is anticipated that alternative splicing events will be more intensively studied to address different kinds of biological questions. The occurrences of alternative splicing mean that all exons could be classified to be either constitutively or alternatively spliced depending on whether they are virtually included into all mature mRNAs. From an evolutionary point of view, therefore, the alternatively spliced exons would have been associated with distinctive biological characteristics in comparison with constitutively spliced exons. In this paper, we first outline the representative types of alternative splicing events and exon classification, and then review sequence and evolutionary features for the alternatively spliced exons. The main purpose is to facilitate understanding of the biological implications of alternative splicing in eukaryotes. This knowledge is also helpful to establish computational approaches for predicting the splicing pattern of exons.
Collapse
|
10
|
de Boer M, van Leeuwen K, Hauri-Hohl M, Roos D. Activation of cryptic splice sites in three patients with chronic granulomatous disease. Mol Genet Genomic Med 2019; 7:e854. [PMID: 31364312 PMCID: PMC6732321 DOI: 10.1002/mgg3.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/07/2023] Open
Abstract
Background Chronic granulomatous disease (CGD) is a primary immune deficiency caused by mutations in the genes encoding the structural components of the phagocyte NADPH oxidase. As a result, the patients cannot generate sufficient amounts of reactive oxygen species required for killing pathogenic microorganisms. Methods We analyzed NADPH oxidase activity and component expression in neutrophils, performed genomic DNA and cDNA analysis, and used mRNA splicing prediction tools to evaluate the impact of mutations. Results In two patients with CGD, we had previously found mutations that cause aberrant pre‐mRNA splicing. In one patient an exonic mutation in a cryptic donor splice site caused the deletion of the 3' part of exon 6 from the mRNA of CYBB. This patient suffers from X‐linked CGD. The second patient, with autosomal CGD, has a mutation in the donor splice site of intron 1 of CYBA that activates a cryptic donor splice site downstream in intron 1, causing the insertion of intronic sequences in the mRNA. The third patient, recently analyzed, also with autosomal CGD, has a mutation in intron 4 of CYBA, 15 bp from the acceptor splice site. This mutation weakens a branch site and activates a cryptic acceptor splice site, causing the insertion of 14 intronic nucleotides into the mRNA. Conclusion We found three different mutations, one exonic, one in a donor splice site and one intronic, that all caused missplicing of pre‐mRNA. We analyzed these mutations with four different splice prediction programs and found that predictions of splice site strength, splice enhancer and splice silencer protein binding and branch site strength are all essential for correct prediction of pre‐mRNA splicing.
Collapse
Affiliation(s)
- Martin de Boer
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mathias Hauri-Hohl
- Department of Stem Cell Transplantation Research, University Children's Hospital Zürich, Zürich, Switzerland
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Abstract
Chronic granulomatous disease is a clinical condition that stems from inactivating mutations in NOX2 and its auxiliary proteins. Together, these proteins form the phagocyte NADPH oxidase enzyme that generates superoxide. Superoxide (O2ċ-) and its reduced product hydrogen peroxide (H2O2) give rise to several additional reactive oxygen species (ROS), which together are necessary for adequate killing of pathogens. Thus, CGD patients, with a phagocyte NADPH oxidase that is not properly functioning, suffer from recurrent, life-threatening infections with certain bacteria, fungi, and yeasts. Here, I give a short survey of the genetic mutations that underlie CGD, the effect of these mutations on the activity of the leukocyte NADPH oxidase, the clinical symptoms of CGD patients, and the treatment options for these patients.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Eguchi M, Yagi C, Tauchi H, Kobayashi M, Ishii E, Eguchi-Ishimae M. Exon skipping in CYBB mRNA and skewed inactivation of X chromosome cause late-onset chronic granulomatous disease. Pediatr Hematol Oncol 2018; 35:341-349. [PMID: 30633606 DOI: 10.1080/08880018.2018.1522402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic granulomatous disease (CGD) is a hereditary immunodeficiency syndrome caused by a defect in the NADPH oxidase complex, which is essential for bactericidal function of phagocytes. Approximately 70% of patients with CGD have a mutation in the CYBB gene on the X chromosome, resulting in defective expression of gp91phox, one of the membrane-bound subunits of NADPH oxidase. Although most patients with X-linked CGD are males, owing to transmission of this disease as an X-linked recessive trait, there are female patients with X-linked CGD. Here, we report the case of a teenage girl with X-linked CGD associated with a heterozygous mutation in exon 5 of the CYBB gene (c.389G > C; R130P), which causes skipping of exon 5, resulting in a premature stop codon in exon 6 of CYBB. Accurate pro-mRNA splicing for mature mRNA formation is regulated by several splicing mechanisms that are essential for appropriate recognition of exonic sequences. The c.389G > C mutation disrupts exonic-splicing regulator sequences, thereby resulting in the aberrant skipping of exon 5 in the CYBB transcript of the patient. The patient showed an extremely skewed (≥96%) X inactivation pattern of the HUMARA locus; this inactivation is thought to be responsible for the development of CGD not only in neutrophils but also in monocytic, T-cell, and B-cell lineages and in CD34-positive immature hematopoietic cells. Our case and other reports indicate that the onset of X-linked CGD in female patients tends to occur later in life, and that the symptoms tend to be milder as compared to male patients.
Collapse
Affiliation(s)
- Mariko Eguchi
- a Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Chihiro Yagi
- a Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Hisamichi Tauchi
- a Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Masao Kobayashi
- b Department of Pediatrics , Hiroshima University Graduate School of Biomedical Sciences , Hiroshima , Hiroshima , Japan
| | - Eiichi Ishii
- a Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Minenori Eguchi-Ishimae
- a Department of Pediatrics , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| |
Collapse
|