1
|
Booth C, Sevilla J, Almarza E, Kuo CY, Zubicaray J, Terrazas D, O'Toole G, Chitty-Lopez M, Choi G, Nicoletti E, Long-Boyle J, Fernandes A, Chetty K, De Oliveira S, Banuelos C, Xu-Bayford J, Bastone AL, John-Neek P, Jackson C, Moore TB, Gilmour K, Schambach A, Rothe M, Kasbekar S, Rao GR, Patel K, Shah G, Thrasher AJ, Bueren JA, Schwartz JD, Kohn DB. Lentiviral Gene Therapy for Severe Leukocyte Adhesion Deficiency Type 1. N Engl J Med 2025; 392:1698-1709. [PMID: 40305711 DOI: 10.1056/nejmoa2407376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
BACKGROUND The β2 common integrin subunit CD18 is essential for leukocyte-endothelial adhesion and extravasation to inflamed or infected tissue. Damaging variants in ITGB2, which encodes CD18, cause leukocyte adhesion deficiency type I (LAD-I), an inborn error of immunity that leads to frequent life-threatening infections and a high risk of death among affected children. Allogeneic hematopoietic stem-cell transplantation (HSCT) represents a curative treatment but is limited by donor availability, a high incidence of graft-versus-host disease, and graft failure. METHODS In a phase 1-2, multinational, open-label study, we enrolled nine children who had severe LAD-I and treated them with marnetegragene-autotemcel (marne-cel), a gene therapy of autologous CD34+ hematopoietic stem cells transduced with a self-inactivating lentiviral vector containing human ITGB2, and followed them for 24 months. The primary efficacy end point of the phase 2 study was survival without allogeneic HSCT (HSCT-free survival) at least 1 year after marne-cel infusion and at 2 years of age among the patients who were younger than 1 year of age at enrollment, tested against a null hypothesis of survival of 39% of the patients. We also report interim data from six patients enrolled in the long-term follow-up study. RESULTS Serious adverse events related to myeloablative busulfan conditioning were observed. No adverse events attributed to gene therapy were reported. None of the patients had graft failure. HSCT-free survival was 100% (95% confidence interval [CI], 66 to 100) at 1 year after infusion (P<0.001). All the patients who were enrolled at younger than 1 year of age were alive beyond 2 years of age. Pretreatment neutrophilia and skin abnormalities related to LAD-I resolved. The annualized incidence of infection-related hospitalizations beyond 90 days after engraftment through 24 months after marne-cel infusion was 74.45% lower than the incidence before marne-cel infusion, the annualized incidence of prolonged infection-related hospitalizations was 81.95% lower, and the annualized incidence of prespecified serious infections was 84.90% lower. CONCLUSIONS In this study, lentiviral vector-transduced autologous CD34+ HSCT was successful in treating severe LAD-I. (Funded by Rocket Pharmaceuticals and the California Institute for Regenerative Medicine; ClinicalTrials.gov numbers, NCT03812263 and NCT06282432.).
Collapse
Affiliation(s)
- Claire Booth
- University College London Great Ormond Street Institute of Child Health, London
- Great Ormond Street Hospital NHS Foundation Trust, London
| | - Julián Sevilla
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
| | - Elena Almarza
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Rocket Pharmaceuticals, Cranbury, NJ
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | - Josune Zubicaray
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
| | | | | | | | | | | | - Janel Long-Boyle
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco
| | | | - Kritika Chetty
- University College London Great Ormond Street Institute of Child Health, London
| | | | | | | | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London
- Immunology Department, Great Ormond Street Hospital, London
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Adrian J Thrasher
- University College London Great Ormond Street Institute of Child Health, London
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | | |
Collapse
|
2
|
Norouzi-Barough L, Olyaei NA, Carapito R, Molitor A, Biglari S, Poostiyan N, Shahrooei M, Vahidnezhad H, Tabatabaiefar MA, Bahram S, Sherkat R. A novel ITGB2 variant in a patient with severe recurrent pyoderma gangrenosum-like lesions and underlying leukocyte adhesion deficiency type I: case report and literature review. Arch Dermatol Res 2025; 317:681. [PMID: 40195196 DOI: 10.1007/s00403-025-04206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Leukocyte adhesion deficiency (LAD) is a group of inborn errors of immunity caused by mutations of integrin subunit b2 gene (ITGB2). Pyoderma gangrenosum (PG) is an uncommon neutrophilic dermatosis characterized by recurrent, sterile, and enlarging necrotic ulcers which may manifest as a single or multiple new lesions simultaneously. Here we report a 43-year-old woman from a consanguine marriage who was diagnosed with LAD-I in childhood, recurrent severe PG-like lesion, and atypical manifestations including celiac disease and low CD19 B-cell subsets. A targeted genetic panel revealed a novel homozygous missense variant c.988T>C (Tyr330His) in ITGB2 gene. While the treatment with prednisolone, cyclosporine, and antibiotics led to partial improvement, the patient unfortunately discontinued the therapy and later died from septicemia. Early hematopoietic cell transplantation (HCT) shortly after birth can be highly effective in managing patients with LAD and preventing life-threatening infections. However, evidence suggests that HCT does not prevent autoinflammatory and autoimmune disorders such as PG. Therefore, it is important to monitor LAD patients for the potential development of PG, even after HCT.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Alipour Olyaei
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Pôle de Biologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazila Poostiyan
- Skin Diseases and Leishmaniasis Research Center, Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France.
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France.
- Laboratoire d'Immunologie, Pôle de Biologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Saito Y, Kewalramani A, Peng XP, Magnarelli A, Lederman HM. Sweet syndrome associated with moderate leukocyte adhesion deficiency type I: a case report and review of the literature. Front Immunol 2024; 15:1425289. [PMID: 39081307 PMCID: PMC11286406 DOI: 10.3389/fimmu.2024.1425289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Sweet syndrome is an acute febrile neutrophilic dermatosis characterized by the infiltration of neutrophils into the skin. It may occur idiopathically or be linked to malignancies, inflammatory or autoimmune diseases. Leukocyte adhesion deficiency type I (LAD-I) is an inborn error immunity wherein leukocytes lack adhesion molecules necessary for migration to infection sites due to mutations in the CD18 gene encoding β2 integrins. We present a case of a 16-month-old female initially diagnosed and treated for Sweet syndrome based on histopathological findings with recurrent flare episodes. Subsequent workup revealed LAD-I, making this case the first documented association between Sweet syndrome and LAD-I. Moreover, we reviewed the pertinent literatures detailing the concurrence of neutrophilic dermatosis and immunodeficiency disorders. This case underscores the significance of comprehensive evaluation for Sweet syndrome patients who are refractory to conventional treatments.
Collapse
Affiliation(s)
- Yoshine Saito
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anupama Kewalramani
- Department of Pediatrics, Division of Pulmonology/Allergy, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xiao P. Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aimee Magnarelli
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Howard M. Lederman
- Eudowood Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Saad MM, Alkady R, Eldash A, El Hawary RE, Meshaal SS, Galal NM, Elmarsafy AM. Analysis of Clinical, Immunological and Molecular Features of Leukocyte Adhesion Deficiency Type I in Egyptian Children. J Clin Immunol 2024; 44:92. [PMID: 38578558 PMCID: PMC10997710 DOI: 10.1007/s10875-024-01693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Leukocyte adhesion deficiency (LAD) represents a rare group of inherited inborn errors of immunity (IEI) characterized by bacterial infections, delayed umbilical stump separation, and autoimmunity. This single-center study aimed at describing the clinical, immunological, and molecular characterizations of 34 LAD-I Egyptian pediatric patients. METHODS Details of 34 patients' personal medical history, clinical and laboratory findings were recorded; Genetic material from 28 patients was studied. Mutational analysis was done by Sanger sequencing. RESULTS Omphalitis, skin and soft tissue infections with poorly healing ulcers, delayed falling of the umbilical stump, and recurrent or un-resolving pneumonia were the most common presentations, followed by chronic otitis media, enteropathy, periodontitis; and recurrent oral thrush. Persistent leukocytosis and neutrophilia were reported in all patients, as well as CD18 and CD11b deficiency. CD18 expression was < 2% in around 90% of patients. Sixteen different pathological gene variants were detected in 28 patients who underwent ITGß2 gene sequencing, of those, ten were novel and six were previously reported. Three families received a prenatal diagnosis. Patients were on antimicrobials according to culture's results whenever available, and on prophylactic Trimethoprim-Sulfamethoxazole 5 mg/kg once daily, with regular clinical follow up. Hematopoietic stem cell transplantation (HSCT) was offered for 4 patients. However due to severity of the disease and delay in diagnosis, 58% of the patients passed away in the first 2 years of life. CONCLUSION This study highlights the importance of early diagnosis and distribution of ITGß2 gene mutation in Egyptian children. Further molecular studies, however, remain a challenging necessity for better disease characterization in the region.
Collapse
Affiliation(s)
- Mai Magdy Saad
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt.
| | - Radwa Alkady
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Alia Eldash
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab E El Hawary
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa S Meshaal
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M Galal
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Aisha M Elmarsafy
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
7
|
Zerbe CS, Holland SM. Functional neutrophil disorders: Chronic granulomatous disease and beyond. Immunol Rev 2024; 322:71-80. [PMID: 38429865 PMCID: PMC10950525 DOI: 10.1111/imr.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.
Collapse
Affiliation(s)
- Christa S Zerbe
- Laboratory of Clinical Immunology, National Institutes of Allergy and Infectious Disease, The National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Hall CHT, de Zoeten EF. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol Rev 2024; 322:329-338. [PMID: 38115672 PMCID: PMC11044353 DOI: 10.1111/imr.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Inflammatory bowel diseases (IBD) are multifactorial diseases which are caused by the combination of genetic predisposition, exposure factors (environmental and dietary), immune status, and dysbiosis. IBD is a disease which presents at any age, ranging from newborns to the elderly. The youngest of the pediatric IBD population have a more unique presentation and clinical course and may have a different etiology. Very early onset IBD (VEOIBD) patients, designated as those diagnosed prior the age of 6, have distinct features which are more frequent in this patient population including increased incidence of monogenetic causes for IBD (0%-33% depending on the study). This proportion is increased in the youngest subsets, which is diagnosed prior to the age of 2. To date, there are approximately 80 monogenic causes of VEOIBD that have been identified and published. Many of these monogenic causes are inborn errors of immunity yet the majority of VEOIBD patients do not have an identifiable genetic cause for their disease. In this review, we will focus on the clinical presentation, evaluation, and monogenic categories which have been associated with VEOIBD including (1) Epithelial cell defects (2) Adaptive immune defects, (3) Innate Immune/Bacterial Clearance and Recognition defects, and (4) Hyperinflammatory and autoinflammatory disorders. We will highlight differential diagnosis of VEOIBD presentations, as well as evaluation and treatment, which will be helpful for those who study and care for VEOIBD patients outside of the pediatric gastroenterology field. This is a fast-moving field of research which has grown significantly based on knowledge that we gain from our patients. These scientific findings have identified novel mucosal biology pathways and will continue to inform our understanding of gastrointestinal biology.
Collapse
Affiliation(s)
- Caroline H. T. Hall
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edwin F. de Zoeten
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Xu Z, Jobe SM, Ma YQ, Shavit JA. A novel leukocyte adhesion deficiency type III mutation manifests functional importance of the compact FERM domain in kindlin-3. J Thromb Haemost 2024; 22:558-564. [PMID: 37866516 PMCID: PMC10872323 DOI: 10.1016/j.jtha.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Leukocyte adhesion deficiency III (LAD-III) is a rare autosomal recessive syndrome characterized by functional deficiencies of platelets and leukocytes that occurs due to mutations in the FERMT3 gene encoding kindlin-3. Kindlin-3 is a FERM domain-containing adaptor protein that is essential in integrin activation. We have previously demonstrated that the FERM domain of kindlin-3 is structurally compact and plays an important role in supporting integrin activation in a mouse model. The impact of destabilizing the compact FERM domain in kindlin-3 on the development of LAD-III in humans remains uncertain. OBJECTIVES To use primary cells from a patient with LAD-III to validate the role of the compact FERM domain in kindlin-3 function in platelets and leukocytes. METHODS The patient is a 4-year-old girl who since infancy has displayed clinical features of LAD-III. Patient platelets and leukocytes were functionally analyzed, and structural analysis of the kindlin-3 variant was conducted. RESULTS We identified a novel homozygous missense mutation in the FERMT3 (c.412G>A, p.E138K) FERM domain. Substantially reduced levels of kindlin-3 were detected in the proband's platelets and leukocytes. Functional evaluation verified that integrin αIIbβ3-mediated platelet activation, spreading, and aggregation and β2-integrin-mediated neutrophil adhesion and spreading were significantly compromised. Structural analysis revealed that this newly identified E138K substitution in kindlin-3 destabilizes the compacted FERM domain, resulting in poor expression of kindlin-3 in blood cells and subsequent LAD-III. CONCLUSION We have identified a novel missense mutation and verified the functional significance of the compact kindlin-3 FERM domain in supporting integrin functions in platelets and leukocytes.
Collapse
Affiliation(s)
- Zhen Xu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Shawn M Jobe
- Department of Pediatrics and Human Development, Michigan State University, Lansing, Michigan, USA
| | - Yan-Qing Ma
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
11
|
Yan M, Zheng H, Yan R, Lang L, Wang Q, Xiao B, Zhang D, Lin H, Jia Y, Pan S, Chen Q. Vinculin Identified as a Potential Biomarker in Hand-Arm Vibration Syndrome Based on iTRAQ and LC-MS/MS-Based Proteomic Analysis. J Proteome Res 2023; 22:2714-2726. [PMID: 37437295 PMCID: PMC10408646 DOI: 10.1021/acs.jproteome.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/14/2023]
Abstract
Local vibration can induce vascular injuries, one example is the hand-arm vibration syndrome (HAVS) caused by hand-transmitted vibration (HTV). Little is known about the molecular mechanism of HAVS-induced vascular injuries. Herein, the iTRAQ (isobaric tags for relative and absolute quantitation) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was applied to conduct the quantitative proteomic analysis of plasma from specimens with HTV exposure or HAVS diagnosis. Overall, 726 proteins were identified in iTRAQ. 37 proteins upregulated and 43 downregulated in HAVS. Moreover, 37 upregulated and 40 downregulated when comparing severe HAVS and mild HAVS. Among them, Vinculin (VCL) was found to be downregulated in the whole process of HAVS. The concentration of vinculin was further verified by ELISA, and the results suggested that the proteomics data was reliable. Bioinformative analyses were used, and those proteins mainly engaged in specific biological processes like binding, focal adhesion, and integrins. The potential of vinculin application in HAVS diagnosis was validated by the receiver operating characteristic curve.
Collapse
Affiliation(s)
- Maosheng Yan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Hanjun Zheng
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Rong Yan
- The
Centers for Disease Control and Prevention of Haizhu District, Guangzhou, Guangdong 510230, China
| | - Li Lang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Qia Wang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Bin Xiao
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Danying Zhang
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Hansheng Lin
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
| | - Yanxia Jia
- Department
of Public Health, Shanxi Medical University, Tai Yuan, Shanxi 030000, China
| | - Siyu Pan
- Guangdong
Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational
Disease Prevention and Treatment, Guangzhou, Guangdong 510230, China
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| | - Qingsong Chen
- Department
of Public Health, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
12
|
Erdem S, Haskologlu S, Haliloglu Y, Çelikzencir H, Arik E, Keskin O, Eltan SB, Yucel E, Canatan H, Avcilar H, Yilmaz E, Ozcan A, Unal E, Karakukcu M, Celiksoy MH, Kilic SS, Demir A, Genel F, Gulez N, Koker MY, Ozen AO, Baris S, Metin A, Guner SN, Reisli I, Keles S, Dogu EF, Ikinciogullari KA, Eken A. Defective Treg generation and increased type 3 immune response in leukocyte adhesion deficiency 1. Clin Immunol 2023:109691. [PMID: 37433423 DOI: 10.1016/j.clim.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD1 patients. Serum IL-23 levels were elevated in LAD1 patients. Post-curdlan stimulation, LAD1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD1. Finally, LAD1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD1-associated autoimmune symptoms.
Collapse
Affiliation(s)
- Serife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Sule Haskologlu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huriye Çelikzencir
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Elif Arik
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Ozlem Keskin
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Yucel
- Istanbul University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huseyin Avcilar
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Ebru Yilmaz
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Alper Ozcan
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Mehmet Halil Celiksoy
- İstanbul Başakşehir Çam ve Sakura City Hospital, Pediatric Allergy and Immunology Clinic Istanbul, Turkey
| | - Sara Sebnem Kilic
- Bursa Uludag University, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey.
| | - Ayca Demir
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Ferah Genel
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Nesrin Gulez
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Mustafa Yavuz Koker
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Ahmet Oguzhan Ozen
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayse Metin
- Ankara City Hospital, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Sukru Nail Guner
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ismail Reisli
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Sevgi Keles
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Esin Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | | | - Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| |
Collapse
|
13
|
Fazlollahi MR, Hamidieh AA, Moradi L, Shokouhi Shoormati R, Sabetkish N, Esmaeili B, Badalzadeh M, Alizadeh Z, Shamlou S, Movahedi M, Mahloujirad M, Razaghian A, Arshi S, Gharagozlou M, Kalantari A, Bemanian MH, Safari M, Heidarzadeh Arani M, Nabavi M, Parvaneh N, Sadeghi-Shabestari M, Behfar M, Behniafard N, Sherkat R, Ahmadian Heris J, Shariat M, Radmehr R, Houshmand M, Kazemnejad A, Molitor A, Carapito R, Bahram S, Pourpak Z, Moin M. Clinical and immunological characteristics of 69 leukocyte adhesion deficiency-I patients. Pediatr Allergy Immunol 2023; 34:e13990. [PMID: 37492921 DOI: 10.1111/pai.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND In order to support the comprehensive classification of Leukocyte Adhesion Deficiency-I (LAD-I) severity by simultaneous screening of CD11a/CD18, this study assessed clinical, laboratory, and genetic findings along with outcomes of 69 LAD-I patients during the last 15 years. METHODS Sixty-nine patients (40 females and 29 males) with a clinical phenotype suspected of LAD-I were referred to Immunology, Asthma, and Allergy research institute, Tehran, Iran between 2007 and 2022 for further advanced immunological screening and genetic evaluations as well as treatment, were enrolled in this study. RESULTS The diagnosis median age of the patients was 6 months. Delayed umbilical cord separation was found in 25 patients (36.2%). The median diagnostic delay time was 4 months (min-max: 0-82 months). Forty-six patients (66.7%) were categorized as severe (CD18 and/or CD11a: below 2%); while 23 children (33.3%) were in moderate category (CD18 and/or CD11a: 2%-30%). During the follow-ups, 55.1% of children were alive with a mortality rate of 44.9%. Skin ulcers (75.4%), omphalitis (65.2%), and gingivitis (37.7%) were the most frequent complaints. Genetic analysis of the patients revealed 14 previously reported and three novel pathogenic mutations in the ITGB2 gene. The overall survival of patients with and without hematopoietic stem cell transplantation was 79.3% and 55.6%, respectively. CONCLUSION Physicians' awareness of LAD-I considering delayed separation of umbilical cord marked neutrophilic leukocytosis, and variability in CD11 and CD18 expression levels, and genetic analysis leads to early diagnosis and defining disease severity. Moreover, the prenatal diagnosis would benefit families with a history of LAD-I.
Collapse
Affiliation(s)
- Mohammad Reza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moradi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Shokouhi Shoormati
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sabetkish
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shamlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahloujirad
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Gharagozlou
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Kalantari
- Department of Pediatrics, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Safari
- Department of Pediatrics, School of Medicines, Hamadan University of Medical Science, Hamedan, Iran
| | | | - Mohammad Nabavi
- Department of Allergy and Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi-Shabestari
- Immunology Research Center of Tabriz, TB and Lung Disease Research Center, Children Hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Radmehr
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|