1
|
AlSalem HS, Monier M, Abomuti MA, Alnoman RB, Alharbi HY, Aljohani MS, Al-Goul ST, Elkaeed EB, Zghab I, Shafik AL. Chiral resolution of (±)-flurbiprofen using molecularly imprinted hydrazidine-modified cellulose microparticles. Int J Biol Macromol 2023; 253:126928. [PMID: 37717875 DOI: 10.1016/j.ijbiomac.2023.126928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - May Abdullah Abomuti
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Soha T Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Imen Zghab
- Chemistry department, College of Science, Jazan university, Saudi Arabia
| | - Amira L Shafik
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Bailly C, Vergoten G. Flurbiprofen as a biphenyl scaffold for the design of small molecules binding to PD-L1 protein dimer. Biochem Pharmacol 2020; 178:114042. [DOI: 10.1016/j.bcp.2020.114042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
|
3
|
Wobst I, Ebert L, Birod K, Wegner MS, Hoffmann M, Thomas D, Angioni C, Parnham MJ, Steinhilber D, Tegeder I, Geisslinger G, Grösch S. R-Flurbiprofen Traps Prostaglandins within Cells by Inhibition of Multidrug Resistance-Associated Protein-4. Int J Mol Sci 2016; 18:ijms18010068. [PMID: 28042832 PMCID: PMC5297703 DOI: 10.3390/ijms18010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023] Open
Abstract
R-flurbiprofen is the non-COX-inhibiting enantiomer of flurbiprofen and is not converted to S-flurbiprofen in human cells. Nevertheless, it reduces extracellular prostaglandin E2 (PGE2) in cancer or immune cell cultures and human extracellular fluid. Here, we show that R-flurbiprofen acts through a dual mechanism: (i) it inhibits the translocation of cPLA2α to the plasma membrane and thereby curtails the availability of arachidonic acid and (ii) R-flurbiprofen traps PGE2 inside of the cells by inhibiting multidrug resistance–associated protein 4 (MRP4, ABCC4), which acts as an outward transporter for prostaglandins. Consequently, the effects of R-flurbiprofen were mimicked by RNAi-mediated knockdown of MRP4. Our data show a novel mechanism by which R-flurbiprofen reduces extracellular PGs at physiological concentrations, particularly in cancers with high levels of MRP4, but the mechanism may also contribute to its anti-inflammatory and immune-modulating properties and suggests that it reduces PGs in a site- and context-dependent manner.
Collapse
Affiliation(s)
- Ivonne Wobst
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Lisa Ebert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.E.); (M.J.P.)
| | - Kerstin Birod
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Marthe-Susanna Wegner
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Marika Hoffmann
- Institute of Pharmaceutical Chemistry, ZAFES, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany;
| | - Dominique Thomas
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Carlo Angioni
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Michael J. Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.E.); (M.J.P.)
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, ZAFES, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany;
| | - Irmgard Tegeder
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
| | - Gerd Geisslinger
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (L.E.); (M.J.P.)
| | - Sabine Grösch
- Pharmazentrum frankfurt, ZAFES, Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany; (I.W.); (K.B.); (M.-S.W.); (D.T.); (C.A.); (I.T.); (G.G.)
- Correspondence: ; Tel.: +49/69-6301-7820; Fax: +49/69-6301-7636
| |
Collapse
|
4
|
Abetov D, Mustapova Z, Saliev T, Bulanin D, Batyrbekov K, Gilman CP. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways. Stem Cell Rev Rep 2015; 11:909-918. [PMID: 26210995 DOI: 10.1007/s12015-015-9612-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.
Collapse
Affiliation(s)
- Danysh Abetov
- Laboratory of Translational Medicine and Life Sciences Technologies, Centre for Life Sciences, Nazarbayev University, Unit 9, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Zhanar Mustapova
- Laboratory of Translational Medicine and Life Sciences Technologies, Centre for Life Sciences, Nazarbayev University, Unit 9, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Timur Saliev
- Laboratory of Translational Medicine and Life Sciences Technologies, Centre for Life Sciences, Nazarbayev University, Unit 9, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| | - Denis Bulanin
- School of Medicine, Nazarbayev University, Unit 9, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Kanat Batyrbekov
- Research Institute of Traumatology and Orthopedics, Astana, 010000, Kazakhstan
| | - Charles P Gilman
- School of Science and Technology, Nazarbayev University, Unit 7, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|
5
|
Abetov D, Mustapova Z, Saliev T, Bulanin D, Batyrbekov K, Gilman CP. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways. Stem Cell Rev Rep 2015; 11:909-918. [DOI: doi.org/10.1007/s12015-015-9612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
6
|
Chen Z, Zhang W, Wang L, Fan H, Wan Q, Wu X, Tang X, Tang JZ. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan. Chirality 2015; 27:650-7. [DOI: 10.1002/chir.22481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Zhi Chen
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - Wei Zhang
- School of Basic Courses; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - Liping Wang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - Huajun Fan
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
- Faculty of Science and Engineering; University of Wolverhampton; Wolverhampton UK
| | - Qiang Wan
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - Xuehao Wu
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - Xunyou Tang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou P.R. China
| | - James Z. Tang
- Faculty of Science and Engineering; University of Wolverhampton; Wolverhampton UK
| |
Collapse
|
7
|
Liu F, Cao X, Liu Z, Guo H, Ren K, Quan M, Zhou Y, Xiang H, Cao J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim Biophys Sin (Shanghai) 2014; 46:15-21. [PMID: 24247269 DOI: 10.1093/abbs/gmt123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A subpopulation of cancer stem cells is recognized as the cause of tumorigenesis and spreading. To investigate the effects of casticin (5,3'-dihydroxy-3,6,7,4'-tetramethoxyflavone), derived from Fructus Viticis Simplicifoliae, on lung cancer stem cells, we isolated and identified a subpopulation of lung cancer stem-like cells (LCSLCs) from non-small-cell lung carcinoma A549 cells with the features including self-renewal capacity and high invasiveness in vitro, elevated tumorigenic activity in vivo, and high expression of stemness markers CD133, CD44, and aldehyde dehydrogenase 1 (ALDH1), using serum-free suspension sphere-forming culture method. We then found that casticin could suppress the proliferation of LCSLCs in a concentration-dependent manner with an IC50 value of 0.4 μmol/L, being much stronger than that in parental A549 cells. In addition, casticin could suppress the self-renewal and invasion of LCSLCs concomitant with decreased CD133, CD44, and ALDH1 protein expression and reduced MMP-9 activity. Further experiments showed that casticin suppressed self-renewal and invasion at least partly through down-regulation of Akt phosphorylation. In conclusion, casticin suppressed the characteristics of LCSLCs, suggesting that casticin may be a candidate compound for curing lung cancer via eliminating cancer stem cells.
Collapse
Affiliation(s)
- Fei Liu
- College of Medicine, Hunan Normal University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ribeiro AE, Gomes PS, Pais LS, Rodrigues AE. Chiral separation of flurbiprofen enantiomers by preparative and simulated moving bed chromatography. Chirality 2011; 23:602-11. [DOI: 10.1002/chir.20978] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/26/2011] [Indexed: 11/11/2022]
|
9
|
Ribeiro AE, Graça NS, Pais LS, Rodrigues AE. Optimization of the mobile phase composition for preparative chiral separation of flurbiprofen enantiomers. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2009.03.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Validation of a nonaqueous capillary electrophoretic method for the enantiomeric purity determination of R-flurbiprofen using a single-isomer amino cyclodextrin derivative. J Chromatogr A 2008; 1204:219-25. [DOI: 10.1016/j.chroma.2008.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/13/2008] [Accepted: 06/03/2008] [Indexed: 11/18/2022]
|