1
|
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice. BIOLOGY 2021; 10:biology10121355. [PMID: 34943270 PMCID: PMC8698290 DOI: 10.3390/biology10121355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Type 4 cAMP-phosphodiesterases (PDE4s) comprise a family of four isoenzymes, PDE4A to D, that hydrolyze and inactivate the second messenger cAMP. Non/PAN-selective PDE4 inhibitors, which inhibit all four PDE4 subtypes simultaneously, produce many promising therapeutic benefits, such as anti-inflammatory or cognition- and memory-enhancing effects. However, unwanted side effects, principally, nausea, diarrhea, and emesis, have long hampered their clinical and commercial success. Targeting individual PDE4 subtypes has been proposed for developing drugs with an improved safety profile, but which PDE4 subtype(s) is/are actually responsible for nausea and emesis remains ill-defined. Based on the observation that nausea is often accompanied by hypothermia in humans and other mammals, we used the measurement of core body temperatures of mice as a potential correlate of nausea induced by PDE4 inhibitors in humans. We find that selective inactivation of any of the four PDE4 subtypes did not change the body temperature of mice, suggesting that PAN-PDE4 inhibitor-induced hypothermia (and hence nausea in humans) requires the simultaneous inhibition of multiple PDE4 subtypes. This finding contrasts with prior reports that proposed PDE4D as the subtype mediating these side effects of PDE4 inhibitors and suggests that subtype-selective inhibitors that target any individual PDE4 subtype, including PDE4D, may not cause nausea. Abstract Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.
Collapse
|
2
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
3
|
Jankowska A, Pawłowski M, Chłoń-Rzepa G. Diabetic Theory in Anti-Alzheimer's Drug Research and Development. Part 2: Therapeutic Potential of cAMP-Specific Phosphodiesterase Inhibitors. Curr Med Chem 2021; 28:3535-3553. [PMID: 32940168 DOI: 10.2174/0929867327666200917125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disease that affects the cognition, behavior, and daily activities of individuals. Studies indicate that this disease is characterized by several pathological mechanisms, including the accumulation of amyloid-beta peptide, hyperphosphorylation of tau protein, impairment of cholinergic neurotransmission, and increase in inflammatory responses within the central nervous system. Chronic neuroinflammation associated with AD is closely related to disturbances in metabolic processes, including insulin release and glucose metabolism. As AD is also called type III diabetes, diverse compounds having antidiabetic effects have been investigated as potential drugs for its symptomatic and disease-modifying treatment. In addition to insulin and oral antidiabetic drugs, scientific attention has been paid to cyclic-3',5'-adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) inhibitors that can modulate the concentration of glucose and related hormones and exert beneficial effects on memory, mood, and emotional processing. In this review, we present the most recent reports focusing on the involvement of cAMP-specific PDE4, PDE7, and PDE8 in glycemic and inflammatory response controls as well as the potential utility of the PDE inhibitors in the treatment of AD. Besides the results of in vitro and in vivo studies, the review also presents recent reports from clinical trials.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, Krakow 30-688, Poland
| |
Collapse
|
4
|
Roflumilast: A potential drug for the treatment of cognitive impairment? Neurosci Lett 2020; 736:135281. [DOI: 10.1016/j.neulet.2020.135281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
5
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
7
|
He N, Kim N, Song M, Park C, Kim S, Park EY, Yim HY, Kim K, Park JH, Kim KI, Zhang F, Mills GB, Yoon S. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol Cancer Ther 2014; 13:2463-73. [PMID: 25122068 DOI: 10.1158/1535-7163.mct-14-0297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent proliferation of data on large collections of well-characterized cancer cell lines linked to therapeutic drug responses has made it possible to identify lineage- and mutation-specific transcriptional markers that can help optimize implementation of anticancer agents. Here, we leverage these resources to systematically investigate the presence of mutation-specific transcription markers in a wide variety of cancer lineages and genotypes. Sensitivity and specificity of potential transcriptional biomarkers were simultaneously analyzed in 19 cell lineages grouped into 228 categories based on the mutational genotypes of 12 cancer-related genes. Among a total of 1,455 category-specific expression patterns, the expression of cAMP phosphodiesterase-4D (PDE4D) with 11 isoforms, one of the PDE4(A-D) subfamilies, was predicted to be regulated by a mutant form of serine/threonine kinase 11 (STK11)/liver kinase B1 (LKB1) present in lung cancer. STK11/LKB1 is the primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK). Subsequently, we found that the knockdown of PDE4D gene expression inhibited proliferation of STK11-mutated lung cancer lines. Furthermore, challenge with a panel of PDE4-specific inhibitors was shown to selectively reduce the growth of STK11-mutated lung cancer lines. Thus, we show that multidimensional analysis of a well-characterized large-scale panel of cancer cell lines provides unprecedented opportunities for the identification of unexpected oncogenic mechanisms and mutation-specific drug targets.
Collapse
Affiliation(s)
- Ningning He
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Nayoung Kim
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Mee Song
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Choa Park
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Somin Kim
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hwa Young Yim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyunga Kim
- Department of Statistics, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Fan Zhang
- Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sukjoon Yoon
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Efficacy of selective PDE4D negative allosteric modulators in the object retrieval task in female cynomolgus monkeys (Macaca fascicularis). PLoS One 2014; 9:e102449. [PMID: 25050979 PMCID: PMC4106781 DOI: 10.1371/journal.pone.0102449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders associated with dysfunction of these circuits. The phosphodiesterase (PDE) type 4 inhibitor rolipram has shown significant pro-cognitive effects in neurological disease models, both in rodents and primates. However, competitive non-isoform selective PDE4 inhibitors have a low therapeutic index which has stalled their clinical development. Here, we demonstrate the pro-cognitive effects of selective negative allosteric modulators (NAMs) of PDE4D, D159687 and D159797 in female Cynomolgous macaques, in the object retrieval detour task. The efficacy displayed by these NAMs in a primate cognitive task which engages the corticostriatal circuitry, together with their suitable pharmacokinetic properties and safety profiles, suggests that clinical development of these allosteric modulators should be considered for the treatment of a variety of brain disorders associated with cognitive decline.
Collapse
|
9
|
Richter W, Menniti FS, Zhang HT, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 2013; 17:1011-27. [PMID: 23883342 DOI: 10.1517/14728222.2013.818656] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning, and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. AREAS COVERED PDE4 is the largest of the 11 mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. EXPERT OPINION PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors.
Collapse
Affiliation(s)
- Wito Richter
- University of California San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA 94143-0556, USA.
| | | | | | | |
Collapse
|
10
|
Mukherjee S, Pal M. Quinolines: a new hope against inflammation. Drug Discov Today 2013; 18:389-98. [DOI: 10.1016/j.drudis.2012.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/12/2012] [Accepted: 11/07/2012] [Indexed: 01/05/2023]
|
11
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
12
|
Terry AV, Callahan PM, Hall B, Webster SJ. Alzheimer's disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011; 99:190-210. [PMID: 21315756 PMCID: PMC3113643 DOI: 10.1016/j.pbb.2011.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology and Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
13
|
Gallant M, Aspiotis R, Day S, Dias R, Dubé D, Dubé L, Friesen RW, Girard M, Guay D, Hamel P, Huang Z, Lacombe P, Laliberté S, Lévesque JF, Liu S, Macdonald D, Mancini J, Nicholson DW, Styhler A, Townson K, Waters K, Young RN, Girard Y. Discovery of MK-0952, a selective PDE4 inhibitor for the treatment of long-term memory loss and mild cognitive impairment. Bioorg Med Chem Lett 2010; 20:6387-93. [PMID: 20933411 DOI: 10.1016/j.bmcl.2010.09.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 12/16/2022]
Abstract
The structure-activity relationship of a novel series of 8-biarylnaphthyridinones acting as type 4 phosphodiesterase (PDE4) inhibitors for the treatment of long-term memory loss and mild cognitive impairment is described herein. The manuscript describes a new paradigm for the development of PDE4 inhibitor targeting CNS indications. This effort led to the discovery of the clinical candidate MK-0952, an intrinsically potent inhibitor (IC(50)=0.6 nM) displaying limited whole blood activity (IC(50)=555 nM). Supporting in vivo results in two preclinical efficacy tests and one test assessing adverse effects are also reported. The comparative profiles of MK-0952 and two other Merck compounds are described to validate the proposed hypothesis.
Collapse
Affiliation(s)
- Michel Gallant
- Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada H9H3L1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lacombe P, Chauret N, Claveau D, Day S, Deschênes D, Dubé D, Gallant M, Girard Y, Huang Z, Laliberté F, Lévesque JF, Liu S, Macdonald D, Mancini JA, Masson P, Nicholson DW, Nicoll-Griffith DA, Salem M, Styhler A, Young RN. Alkyl-bridged substituted 8-arylquinolines as highly potent PDE IV inhibitors. Bioorg Med Chem Lett 2009; 19:5266-9. [DOI: 10.1016/j.bmcl.2009.03.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
15
|
Lu S, Liu N, Dass SB, Reiss TF, Knorr BA. Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir Med 2009; 103:342-7. [PMID: 19135348 DOI: 10.1016/j.rmed.2008.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Phosphodiesterase-4 (PDE4) inhibitors have potential utility as a new therapeutic approach to improving symptoms and pulmonary function in asthma and COPD. This study evaluated the efficacy and safety of MK-0359, a selective and potent oral PDE4 inhibitor, in chronic asthma. METHODS Adults (N=88) with > or =1 year asthma history and an FEV(1) 50-80% predicted were randomized to double-blind treatment with MK-0359 (15mg/day) or placebo for 14 days, then crossed-over to the other treatment for 14 days. The primary endpoint was the change from baseline in FEV(1) at the end of each 2-week treatment period. Secondary and other endpoints included the changes from baseline in Daytime asthma symptom score, Nighttime asthma symptom score, Total daily beta-agonist use (puffs/day), AM and PM peak expiratory flow (PEF) and overall asthma-specific quality-of-life. Safety and tolerability were assessed by clinical adverse experiences. RESULTS MK-0359 significantly improved the primary endpoint (versus placebo): the least-squares mean difference in change from baseline in FEV(1) (L) was 0.09L (95% CI 0.01, 0.18). Endpoints of Daytime asthma symptom score, Nighttime asthma symptom score, Total daily beta-agonist use, AM PEF, PM PEF, and quality-of-life were also significantly improved. Nineteen patients (24.1%) on MK-0359 and 8 patients (10.4%) on placebo reported gastrointestinal clinical adverse experiences. Serious gastrointestinal clinical adverse experiences were reported in 3 patients while receiving MK-0359. CONCLUSION Over a 14-day treatment period, the oral PDE4 inhibitor MK-0359 improved lower airway function, symptoms and rescue medication use in chronic asthma, although at the expense of gastrointestinal adverse experiences. (Clinical trial registry number: NCT00482898.).
Collapse
Affiliation(s)
- Susan Lu
- Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | |
Collapse
|
16
|
Press NJ, Banner KH. PDE4 inhibitors - a review of the current field. PROGRESS IN MEDICINAL CHEMISTRY 2009; 47:37-74. [PMID: 19328289 DOI: 10.1016/s0079-6468(08)00202-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil J Press
- Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, UK
| | | |
Collapse
|
17
|
Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 2009; 202:419-43. [PMID: 18709359 PMCID: PMC2704616 DOI: 10.1007/s00213-008-1273-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/23/2008] [Indexed: 12/15/2022]
Abstract
RATIONALE One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer's disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. OBJECTIVE The aim of this review was to provide an overview of the effects of phosphodiesterase inhibitors (PDE-Is) on cognition, the possible underlying mechanisms, and the relationship to current theories about memory formation. MATERIALS AND METHODS Studies of the effects of inhibitors of different PDE families (2, 4, 5, 9, and 10) on cognition were reviewed. In addition, studies related to PDE-Is and blood flow, emotional arousal, and long-term potentiation (LTP) were described. RESULTS PDE-Is have a positive effect on several aspects of cognition, including information processing, attention, memory, and executive functioning. At present, these data are likely to be explained in terms of an LTP-related mechanism of action. CONCLUSION PDE-Is are a promising target for cognition enhancement; the most suitable candidates appear to be PDE2-Is or PDE9-Is. The future for PDE-Is as cognition enhancers lies in the development of isoform-specific PDE-Is that have limited aversive side effects.
Collapse
|
18
|
Kodimuthali A, Jabaris SSL, Pal M. Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J Med Chem 2008; 51:5471-89. [PMID: 18686943 DOI: 10.1021/jm800582j] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arumugam Kodimuthali
- New Drug Discovery, R & D Center, Matrix Laboratories Limited, Anrich Industrial Estate, Bollaram, Jinnaram Mandal, Medak District, Andhra Pradesh, 502 325, India
| | | | | |
Collapse
|
19
|
Design, synthesis, and biological evaluation of 8-biarylquinolines: A novel class of PDE4 inhibitors. Bioorg Med Chem Lett 2008; 18:1407-12. [DOI: 10.1016/j.bmcl.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022]
|
20
|
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13:36-64. [PMID: 17912248 DOI: 10.1038/sj.mp.4002106] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|