1
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566121. [PMID: 37986873 PMCID: PMC10659355 DOI: 10.1101/2023.11.07.566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
3
|
Dunham KE, Venton BJ. SSRI antidepressants differentially modulate serotonin reuptake and release in Drosophila. J Neurochem 2022; 162:404-416. [PMID: 35736504 PMCID: PMC9427694 DOI: 10.1111/jnc.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are commonly prescribed treatments for depression, but their effects on serotonin reuptake and release are not well understood. Drosophila melanogaster, the fruit fly, expresses the serotonin transporter (dSERT), the major target of SSRIs, but real-time serotonin changes after SSRIs have not been characterized in this model. The goal of this study was to characterize effects of SSRIs on serotonin concentration and reuptake in Drosophila larvae. We applied various doses (0.1-100 μM) of fluoxetine (Prozac), escitalopram (Lexapro), citalopram (Celexa), and paroxetine (Paxil), to ventral nerve cord (VNC) tissue and measured optogenetically-stimulated serotonin release with fast-scan cyclic voltammetry (FSCV). Fluoxetine increased reuptake from 1 to 100 μM, but serotonin concentration only increased at 100 μM. Thus, fluoxetine occupies dSERT and slows clearance but does not affect concentration. Escitalopram and paroxetine increased serotonin concentrations at all doses, but escitalopram increased reuptake more. Citalopram showed lower concentration changes and faster reuptake profiles compared with escitalopram, so the racemic mixture of citalopram does not change reuptake as much as the S-isomer. Dose response curves were constructed to compare dSERT affinities and paroxetine showed the highest affinity and fluoxetine the lowest. These data demonstrate SSRI mechanisms are complex, with separate effects on reuptake or release. Furthermore, dynamic serotonin changes in Drosophila are similar to previous studies in mammals. This work establishes how antidepressants affect serotonin in real-time, which is useful for future studies that will investigate pharmacological effects of SSRIs with different genetic mutations in Drosophila.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Virginia, USA
| |
Collapse
|
4
|
Haase J, Jones AKC, Mc Veigh CJ, Brown E, Clarke G, Ahnert-Hilger G. Sex and brain region-specific regulation of serotonin transporter activity in synaptosomes in guanine nucleotide-binding protein G(q) alpha knockout mice. J Neurochem 2021; 159:156-171. [PMID: 34309872 DOI: 10.1111/jnc.15482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The regulation of the serotonin transporter (SERT) by guanine nucleotide-binding protein alpha (Gα) q was investigated using Gαq knockout mice. In the absence of Gαq, SERT-mediated uptake of 5-hydroxytryptamine (5HT) was enhanced in midbrain and frontal cortex synaptosomes, but only in female mice. The mechanisms underlying this sexual dimorphism were investigated using quantitative western blot analysis revealing brain region-specific differences. In the frontal cortex, SERT protein expression was decreased in male knockout mice, seemingly explaining the sex-dependent variation in SERT activity. The differential expression of Gαi1 in female mice contributes to the sex differences in the midbrain. In fact, Gαi1 levels inversely correlate with 5HT uptake rates across both sexes and genotypes. Likely due to differential SERT regulation as well as sex differences in the expression of tryptophan hydroxylase 2, Gαq knockout mice also displayed sex- and genotype-dependent alterations in total 5HT tissue levels as determined by high-performance liquid chromatography. Gαq inhibitors, YM-254890 and BIM-46187, differentially affected SERT activity in both, synaptosomes and cultured cells. YM-254890 treatment mimicked the effect of Gαq knockout in the frontal cortex. BIM-46187, which promotes the nucleotide-free form of Gα proteins, substantially inhibited 5HT uptake, prompting us to hypothesise that Gαq interacts with SERT similarly as with G-protein-coupled receptors and inhibits SERT activity by modulating transport-associated conformational changes. Taken together, our findings reveal a novel mechanism of SERT regulation and impact our understanding of sex differences in diseases associated with dysregulation of serotonin transmission, such as depression and anxiety.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aimée K C Jones
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Conor J Mc Veigh
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eric Brown
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland and Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin and Max-Planck-Institute for Biophysical Chemistry Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Tong J, Meyer JH, Boileau I, Ang LC, Fletcher PJ, Furukawa Y, Kish SJ. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology (Berl) 2020; 237:2661-2671. [PMID: 32494974 PMCID: PMC7502513 DOI: 10.1007/s00213-020-05562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE The long-held speculation that the brain serotonin system mediates some behavioral effects of the psychostimulant cocaine is supported in part by the high affinity of cocaine for the serotonin transporter (SERT) and by reports that the serotonin transporter (SERT), estimated by SERT binding, is increased in brain of human chronic cocaine users. Excessive SERT activity and consequent synaptic serotonin deficiency might cause a behavioral (e.g., mood) abnormality in chronic users of the drug. OBJECTIVE AND METHODS Previous studies focused on changes in SERT binding, which might not necessarily reflect changes in SERT protein. Therefore, we compared levels of SERT protein, using a quantitative Western blot procedure, in autopsied brain (striatum, cerebral cortices) of chronic human cocaine users (n = 9), who all tested positive for the drug/metabolite in brain, to those in control subjects (n = 15) and, as a separate drug of abuse group, in chronic heroin users (n = 11). RESULTS We found no significant difference in protein levels of SERT or the serotonin synthesizing enzyme tryptophan hydroxylase-2 among the control and drug abuse groups. In the cocaine users, no significant correlations were observed between SERT and brain levels of cocaine plus metabolites, or with levels of serotonin or its metabolite 5-hydroxyindoleacetic acid. CONCLUSION Our postmortem data suggest that a robust increase in striatal/cerebral cortical SERT protein is not a common characteristic of chronic, human cocaine users.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada. .,Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Jeffrey H. Meyer
- Brain Health Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Paul J. Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Post Graduate University of Juntendo, Tokyo, Japan
| | - Stephen J. Kish
- Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
7
|
Brown E, Mc Veigh CJ, Santos L, Gogarty M, Müller HK, Elfving B, Brayden DJ, Haase J. TNFα-dependent anhedonia and upregulation of hippocampal serotonin transporter activity in a mouse model of collagen-induced arthritis. Neuropharmacology 2018; 137:211-220. [DOI: 10.1016/j.neuropharm.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 01/02/2023]
|
8
|
Haase J, Grudzinska-Goebel J, Müller HK, Münster-Wandowski A, Chow E, Wynne K, Farsi Z, Zander JF, Ahnert-Hilger G. Serotonin Transporter Associated Protein Complexes Are Enriched in Synaptic Vesicle Proteins and Proteins Involved in Energy Metabolism and Ion Homeostasis. ACS Chem Neurosci 2017; 8:1101-1116. [PMID: 28362488 DOI: 10.1021/acschemneuro.6b00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The serotonin transporter (SERT) mediates Na+-dependent high-affinity serotonin uptake and plays a key role in regulating extracellular serotonin concentration in the brain and periphery. To gain novel insight into SERT regulation, we conducted a comprehensive proteomics screen to identify components of SERT-associated protein complexes in the brain by employing three independent approaches. In vivo SERT complexes were purified from rat brain using an immobilized high-affinity SERT ligand, amino-methyl citalopram. This approach was combined with GST pulldown and yeast two-hybrid screens using N- and C-terminal cytoplasmic transporter domains as bait. Potential SERT associated proteins detected by at least two of the interaction methods were subjected to gene ontology analysis resulting in the identification of functional protein clusters that are enriched in SERT complexes. Prominent clusters include synaptic vesicle proteins, as well as proteins involved in energy metabolism and ion homeostasis. Using subcellular fractionation and electron microscopy we provide further evidence that SERT is indeed associated with synaptic vesicle fractions, and colocalizes with small vesicular structures in axons and axon terminals. We also show that SERT is found in close proximity to mitochondrial membranes in both, hippocampal and neocortical regions. We propose a model of the SERT interactome, in which SERT is distributed between different subcellular compartments through dynamic interactions with site-specific protein complexes. Finally, our protein interaction data suggest novel hypotheses for the regulation of SERT activity and trafficking, which ultimately impact on serotonergic neurotransmission and serotonin dependent brain functions.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Joanna Grudzinska-Goebel
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Heidi Kaastrup Müller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Department
of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Risskov DK-8240, Denmark
| | | | - Elysian Chow
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Proteomic Core Facility, UCD Conway Institute, School
of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zohreh Farsi
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
9
|
Topiol S, Bang-Andersen B, Sanchez C, Plenge P, Loland CJ, Juhl K, Larsen K, Bregnedal P, Bøgesø KP. X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT. Bioorg Med Chem Lett 2017; 27:470-478. [DOI: 10.1016/j.bmcl.2016.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/25/2023]
|
10
|
Matthäus F, Haddjeri N, Sánchez C, Martí Y, Bahri S, Rovera R, Schloss P, Lau T. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. Eur Neuropsychopharmacol 2016; 26:1806-1817. [PMID: 27665061 DOI: 10.1016/j.euroneuro.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/10/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site.
Collapse
Affiliation(s)
- Friederike Matthäus
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Connie Sánchez
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - Yasmina Martí
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Senda Bahri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Patrick Schloss
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Thorsten Lau
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany.
| |
Collapse
|
11
|
Exploration of insights, opportunities and caveats provided by the X-ray structures of hSERT. Bioorg Med Chem Lett 2016; 26:5058-5064. [PMID: 27624075 DOI: 10.1016/j.bmcl.2016.08.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/16/2023]
Abstract
The recently reported X-ray structures of the human serotonin (5-HT) transporter SERT with bound inhibitors open new opportunities for drug discovery at SERT, selectivity design with respect to other neurotransmitter sodium transporters, and enhanced understanding of the molecular events involved in SERT action. Through computational and structural analyses, we explore the binding and migration of 5-HT at SERT. Consistent with earlier studies of leucine migration at the bacterial homolog of SERT, LeuT, we find multiple potential 'stopover' sites for 5-HT binding at SERT including the two (transmembrane S1 and extracellular vestibule S2) seen in the binding of the SSRI (S)-citalopram (S-Cit) to SERT, as well as other sites. Docking studies reveal the possibility of both hetero- (S-Cit+5-HT) and homo-dimeric (5-HT+5-HT) co-binding at both these sites which may explain earlier published allosteric activity observations and provide novel design strategies. Comparisons with substrate bound X-ray structures of the dopamine transporter reveal a number of potential sources of selectivity, some of which may be 'artificial' including target based, species related, experimental design related, and ligand dependent examples including substrate versus inhibitor related features.
Collapse
|
12
|
Physical and functional interactions between the serotonin transporter and the neutral amino acid transporter ASCT2. Biochem J 2016; 473:1953-65. [DOI: 10.1042/bcj20160315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
The activity of serotonergic systems depends on the reuptake of extracellular serotonin via its plasma membrane serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT), a member of the Na+/Cl−-dependent solute carrier 6 family. SERT is finely regulated by multiple molecular mechanisms including its physical interaction with intracellular proteins. The majority of previously identified SERT partners that control its functional activity are soluble proteins, which bind to its intracellular domains. SERT also interacts with transmembrane proteins, but its association with other plasma membrane transporters remains to be established. Using a proteomics strategy, we show that SERT associates with ASCT2 (alanine–serine–cysteine–threonine 2), a member of the solute carrier 1 family co-expressed with SERT in serotonergic neurons and involved in the transport of small neutral amino acids across the plasma membrane. Co-expression of ASCT2 with SERT in HEK (human embryonic kidney)-293 cells affects glycosylation and cell-surface localization of SERT with a concomitant reduction in its 5-HT uptake activity. Conversely, depletion of cellular ASCT2 by RNAi enhances 5-HT uptake in both HEK-293 cells and primary cultured mesencephalon neurons. Mimicking the effect of ASCT2 down-regulation, treatment of HEK-293 cells and neurons with the ASCT2 inhibitor D-threonine also increases 5-HT uptake. Moreover, D-threonine does not enhance further the maximal velocity of 5-HT uptake in cells depleted of ASCT2. Collectively, these findings provide evidence for a complex assembly involving SERT and a member of another solute carrier family, which strongly influences the subcellular distribution of SERT and the reuptake of 5-HT.
Collapse
|
13
|
Quines CB, Rosa SG, Velasquez D, Da Rocha JT, Neto JSS, Nogueira CW. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav Brain Res 2015; 301:161-7. [PMID: 26738966 DOI: 10.1016/j.bbr.2015.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Daniela Velasquez
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Juliana T Da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - José S S Neto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
14
|
Fairweather SJ, Bröer A, Subramanian N, Tumer E, Cheng Q, Schmoll D, O'Mara ML, Bröer S. Molecular basis for the interaction of the mammalian amino acid transporters B0AT1 and B0AT3 with their ancillary protein collectrin. J Biol Chem 2015; 290:24308-25. [PMID: 26240152 PMCID: PMC4591816 DOI: 10.1074/jbc.m115.648519] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/19/2015] [Indexed: 12/19/2022] Open
Abstract
Many solute carrier 6 (SLC6) family transporters require ancillary subunits to modify their expression and activity. The main apical membrane neutral amino acid transporters in mouse intestine and kidney, B(0)AT1 and B(0)AT3, require the ancillary protein collectrin or ACE2 for plasma membrane expression. Expression and activity of SLC6 neurotransmitter transporters are modulated by interaction with syntaxin 1A. Utilizing monocarboxylate-B(0)AT1/3 fusion constructs, we discovered that collectrin is also necessary for B(0)AT1 and B(0)AT3 catalytic function. Syntaxin 1A and syntaxin 3 inhibit the membrane expression of B(0)AT1 by competing with collectrin for access. A mutagenesis screening approach identified residues on trans-membrane domains 1α, 5, and 7 on one face of B(0)AT3 as a key region involved in interaction with collectrin. Mutant analysis established residues that were involved in collectrin-dependent functions as follows: plasma membrane expression of B(0)AT3, catalytic activation, or both. These results identify a potential binding site for collectrin and other SLC6 ancillary proteins.
Collapse
Affiliation(s)
| | | | - Nandhitha Subramanian
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia and
| | | | - Qi Cheng
- From the Research School of Biology and
| | - Dieter Schmoll
- the Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia and
| | | |
Collapse
|
15
|
Mortensen OV, Kortagere S. Designing modulators of monoamine transporters using virtual screening techniques. Front Pharmacol 2015; 6:223. [PMID: 26483692 PMCID: PMC4586420 DOI: 10.3389/fphar.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, PA, USA
| |
Collapse
|
16
|
Sivamaruthi BS, Madhumita R, Balamurugan K, Rajan KE. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat. Front Pharmacol 2015; 6:188. [PMID: 26388777 PMCID: PMC4560023 DOI: 10.3389/fphar.2015.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 107 CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder.
Collapse
Affiliation(s)
- Bhagavathi S Sivamaruthi
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| | - Rajkumar Madhumita
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| | | | - Koilmani E Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| |
Collapse
|
17
|
Maximino C, Gemaque J, Benzecry R, Lima MG, Batista EDJO, Picanço-Diniz DW, Oliveira KRM, Herculano AM. Role of nitric oxide in the behavioral and neurochemical effects of IB-MECA in zebrafish. Psychopharmacology (Berl) 2015; 232:1671-80. [PMID: 25388291 DOI: 10.1007/s00213-014-3799-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE The adenosine A3 receptor and the nitric oxide (NO) pathway regulate the function and localization of serotonin transporters (SERTs). These transporters regulate extracellular serotonin levels, which are correlated with defensive behavior. OBJECTIVE The purpose of this study was to understand the role of the A3AR on anxiety and arousal models in zebrafish, and whether this role is mediated by the nitrergic modulation of serotonin uptake. METHODS The effects of IB-MECA (0.01 and 0.1 mg/kg) were assessed in a series of behavioral tasks in adult zebrafish, as well as on extracellular serotonin levels in vivo and serotonin uptake in brain homogenates. Finally, the interaction between IB-MECA and drugs blocking voltage-dependent calcium channels (VDCCs), NO synthase, and SERT was analyzed. RESULTS At the lowest dose, IB-MECA decreased bottom dwelling and scototaxis, while at the highest dose, it also decreased shoaling, startle probability, and melanophore responses. These effects were accompanied by an increase in brain extracellular serotonin levels. IB-MECA also concentration-dependently increased serotonin uptake in vitro. The effects of IB-MECA on extracellular 5-HT, scototaxis, and geotaxis were blocked by L-NAME, while only the effects on 5-HT and scototaxis were blocked by verapamil. In vitro, the increase in 5-HT uptake was dependent on VDCCs and NO. Finally, fluoxetine blocked the effect of IB-MECA on scototaxis, but not geotaxis. CONCLUSION These results suggest that the effect of IB-MECA on scototaxis are mediated by a VDCC-NO-SERT pathway. While NO seems to mediate the effects of IB-MECA on geotaxis, neither VDCCs nor SERT seems to be involved in this process.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Universidade do Estado do Pará, Departamento de Morfologia e Ciências Fisiológicas, Núcleo Universitário de Marabá, Marabá, PA, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Multiplexing Label-Free and Fluorescence-Based Methods for Pharmacological Characterization of GPCR Ligands. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/978-1-4939-2617-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
El-Kasaby A, Koban F, Sitte HH, Freissmuth M, Sucic S. A cytosolic relay of heat shock proteins HSP70-1A and HSP90β monitors the folding trajectory of the serotonin transporter. J Biol Chem 2014; 289:28987-9000. [PMID: 25202009 PMCID: PMC4200255 DOI: 10.1074/jbc.m114.595090] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.
Collapse
Affiliation(s)
- Ali El-Kasaby
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and the Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Florian Koban
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Harald H Sitte
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Michael Freissmuth
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| | - Sonja Sucic
- From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria and
| |
Collapse
|
20
|
Sanchez C, Reines EH, Montgomery SA. A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int Clin Psychopharmacol 2014; 29:185-96. [PMID: 24424469 PMCID: PMC4047306 DOI: 10.1097/yic.0000000000000023] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/25/2013] [Indexed: 10/25/2022]
Abstract
It is known that newer antidepressants, such as the selective serotonin reuptake inhibitors (SSRIs), provide advantages in tolerability over antidepressants such as the tricyclics. However, even within the SSRI class, differences in efficacy or tolerability exist between the individual drugs. Among the three most widely prescribed SSRIs are paroxetine, sertraline, and escitalopram. Escitalopram is commonly referred to as an SSRI, but also has well-documented allosteric properties, and thus can be further classed as an allosteric serotonin reuptake inhibitor. All three antidepressants are efficacious compared with placebo, but there is evidence that escitalopram is more effective than a range of other antidepressants. There are no direct data to regard either paroxetine or sertraline as a superior antidepressant. Escitalopram is superior compared with paroxetine, which has a less favorable tolerability profile. Paroxetine is associated with cholinergic muscarinic antagonism and potent inhibition of CYP2D6, and sertraline has moderate drug interaction issues in comparison with escitalopram. Overall, as an allosteric serotonin reuptake inhibitor that is somewhat different from classical SSRIs, escitalopram is the first choice judged by combined efficacy and tolerability, and nonclinical data have offered possible mechanisms through which escitalopram could be more efficacious, based on its interaction with orthosteric and allosteric binding sites at the serotonin transporter.
Collapse
Affiliation(s)
- Connie Sanchez
- External Sourcing, Lundbeck Research USA Inc., Paramus, New Jersey, USA
| | - Elin H. Reines
- International Clinical Research, H. Lundbeck A/S, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Calcineurin interacts with the serotonin transporter C-terminus to modulate its plasma membrane expression and serotonin uptake. J Neurosci 2013; 33:16189-99. [PMID: 24107951 DOI: 10.1523/jneurosci.0076-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homeostasis of serotonergic transmission critically depends on the rate of serotonin reuptake via its plasma membrane transporter (SERT). SERT activity is tightly regulated by multiple mechanisms, including physical association with intracellular proteins and post-translational modifications, such as phosphorylation, but these mechanisms remain partially understood. Here, we show that SERT C-terminal domain recruits both the catalytic and regulatory subunits of the Ca(2+)-activated protein phosphatase calcineurin (CaN) and that the physical association of SERT with CaN is promoted by CaN activity. Coexpression of constitutively active CaN with SERT increases SERT cell surface expression and 5-HT uptake in HEK-293 cells. It also prevents the reduction of 5-HT uptake induced by an acute treatment of cells with the protein kinase C activator β-PMA and concomitantly decreases PMA-elicited SERT phosphorylation. In addition, constitutive activation of CaN in vivo favors 5-HT uptake in the adult mouse brain, whereas CaN inhibition reduces cerebral 5-HT uptake. Constitutive activation of CaN also decreases immobility in the forced swim test, indicative of an antidepressant-like effect of CaN. These results identify CaN as an important regulator of SERT activity in the adult brain and provide a novel molecular substrate of clinical interest for the understanding of increased risk of mood disorders in transplanted patients treated with immunosuppressive CaN inhibitors.
Collapse
|