1
|
de Guzzi Tremarin RF, Zambetta ML, Park J, Gianlorenco AC. Revitalizing Minds and Muscles: A Narrative Review of Potential Impact of Transcranial Photobiomodulation and Exercise on Cognitive and Motor Enhancement in the Elderly. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2025; 30:e70062. [PMID: 40387249 DOI: 10.1002/pri.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 05/20/2025]
Abstract
Over the last century, there has been a growing increase in life expectancy, and longevity brings with it a decline in cognitive functioning, negatively affecting people's lives. Thus, there is significant interest in developing non-invasive interventions that can enhance life expectancy and delay functional decline, especially during the early stages. Transcranial photobiomodulation (tPBM) is a technique that involves exposing neural tissue to a low fluence of light capable of stimulating brain activity. Physical training is a crucial strategy to mitigate the decline in cognitive and brain health associated with aging. The synergy of tPBM and exercise may support the maintenance of cognitive functions and possibly delay the onset of age-related cognitive decline. Here we conduct a narrative review, and we found that despite promising findings regarding this synergy, several research gaps remain, with preclinical studies in animals being essential for advancing the understanding of the effects of PBM and exercise in older adults. These studies would allow for the investigation of optimal PBM parameters such as wavelength, intensity, and duration, providing insights that could influence future clinical trials, assess the safety and efficacy of combined PBM and exercise interventions, and identify risks or potential contraindications. PBM, when combined with exercise, holds substantial promise for improving motor and cognitive health in aging populations at risk of cognitive impairment. In conclusion, ongoing research in this area is essential for understanding and promoting brain health and reducing the effects of aging and neurodegeneration.
Collapse
Affiliation(s)
- Renata Ferreira de Guzzi Tremarin
- Neuroscience and Neurological Rehabilitation Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Mariana Lara Zambetta
- Neuroscience and Neurological Rehabilitation Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Jisu Park
- The Research Institute, Irvine, California, USA
| | - Anna Carolyna Gianlorenco
- Neuroscience and Neurological Rehabilitation Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
- Spaulding Neuromodulation Center, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
O'Leary JD, Main BS, Burns MP. Non-invasive therapeutics for neurotrauma: a mechanistic overview. Front Neurol 2025; 16:1560777. [PMID: 40438568 PMCID: PMC12116354 DOI: 10.3389/fneur.2025.1560777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/21/2025] [Indexed: 06/01/2025] Open
Abstract
Traumatic brain injury is a leading cause of death and a major risk factor for the development of both memory and motor disorders. To date, there are no proven interventions to improve patient outcome after neurotrauma. A promising avenue of treatment has emerged in the use of non-invasive therapies for recovery after brain injury. A number of non-invasive brain stimulation techniques have been developed, such as transcranial direct current stimulation, transcranial magnetic stimulation and vagus nerve stimulation, as well as low intensity ultrasound stimulation and photobiomodulation therapy. However, standardized treatment regimens have not been developed. There is a clear need to better understand the underlying mechanisms of non-invasive therapeutics on brain injury pathology so as to more effectively guide treatment strategy. Here we review the current literature of non-invasive therapies in preclinical neurotrauma and offer insight into the potential mechanism of action and novel targets for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
| | | | - Mark P. Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Centre, Washington, DC, United States
| |
Collapse
|
3
|
Yang L, Gao Y, Lopes LS, Lian J, Fu W, Tan H, Yang S, Xie Z, Huang Y, Zhang J, Lu Y, Tang H, Xiong B, Wei X, Xie L, Peng Y, Liu X, Han H. Accelerated Molecular Transportation in the Brain Extracellular Space with 755-nm Light Attenuates Post-Stroke Cognitive Impairment in Rats. CYBORG AND BIONIC SYSTEMS 2025; 6:0262. [PMID: 40330544 PMCID: PMC12053100 DOI: 10.34133/cbsystems.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
Ischemic stroke exacts a heavy toll in death and disability worldwide. After ischemic stroke, the accumulation of pathobiomolecules in the brain extracellular space (ECS) will exacerbate neurological damage and cognitive impairment. Photobiomodulation (PBM) has been demonstrated to improve cognitive function in Alzheimer's disease mouse models by accelerating molecular transportation in the brain ECS. This suggests that PBM may have a potential role in the accumulation of pathobiomolecules in the brain ECS following ischemic stroke. In this study, we developed a PBM therapy apparatus with custom parameters. By evaluating the treatment effect, we identified that 755 nm was the optimal light wavelength for ischemic stroke in rats with transient middle cerebral artery occlusion/reperfusion. Extracellular diffusion and interstitial fluid (ISF) drainage were measured using a tracer-based magnetic resonance imaging method. Our results showed that PBM accelerated molecular transportation in the brain ECS and ISF drainage, promoting the clearance of pro-inflammatory cytokines and reducing the deposition of pathological proteins. Consequently, the infarct volume decreased and neurological cognitive function was improved. Besides, the acceleration of ISF drainage was achieved by reducing expression and restoring polarization of aquaporin 4 (AQP4) in the peri-infarct area. In summary, we demonstrated that PBM could alleviate ischemia-reperfusion injury and prevent post-stroke cognitive impairment by accelerating molecular transportation in the brain ECS, paving a pathway for ischemic stroke treatment via the light-ECS interaction.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China
| | - Yajuan Gao
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China
| | - Leonor Serrano Lopes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital,
University of Bern, Bern 3010, Switzerland
- Graduate School for Cellular and Biomedical Sciences,
University of Bern, Bern 3012, Switzerland
| | - Jingge Lian
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China
| | - Wanyi Fu
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
- Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China
| | - Hanbo Tan
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Shuangfeng Yang
- Department of Radiology, Beijing Children’s Hospital,
Capital Medical University, National Center for Children’ Health, Beijing 100045, China
| | - Zhaoheng Xie
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Yixing Huang
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering,
Beihang University, Beijing 100191, China
| | - Yanye Lu
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Hao Tang
- School of Computer Science,
Peking University, Beijing 100871, China
| | - Bo Xiong
- School of Computer Science,
Peking University, Beijing 100871, China
| | - Xunbin Wei
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Lide Xie
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Yun Peng
- Department of Radiology, Beijing Children’s Hospital,
Capital Medical University, National Center for Children’ Health, Beijing 100045, China
| | - Xinyu Liu
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
| | - Hongbin Han
- Department of Radiology,
Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing 100191, China
- Institute of Medical Technology,
Peking University Health Science Center, Beijing 100191, China
- Chengde Medical University, Chengde, Hebei 067000, China
| |
Collapse
|
4
|
Lai QJ, Chen Y, Liu L, Li HM, Pan MR, Wang YF, Niu HJ, Qian QJ. Repetitive Transcranial Photobiomodulation Improves Working Memory and Attention in Adults with ADHD: A 4-Week Follow-Up Study. Photobiomodul Photomed Laser Surg 2025; 43:190-197. [PMID: 40244858 DOI: 10.1089/photob.2025.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Background: Working memory (WM) impairments and inattention symptoms are prevalent among adults with attention-deficit/hyperactivity disorder (ADHD). Transcranial photobiomodulation (tPBM) is a promising brain stimulation technique that may enhance cognitive function among adults with ADHD. Objectives: We aimed to explore the effects of tPBM on improving N-back WM and Continuous Performance Test-Identical Pairs (CPT-IP) attention tasks in adults with ADHD, as well as its baseline predictive factors. Methods: Forty-eight adults with ADHD underwent a 7-day tPBM intervention (720 s daily, 1064-nm wavelength, 250 mW/cm2 irradiance). Participants completed the N-back (1-back, 2-back, 3-back) WM, and CPT-IP (cpt-2, cpt-3, cpt-4) attention tasks at baseline (T1), after the first (T2), and seventh (T3) interventions, and during four weekly follow-ups (T4-T7). Safety was assessed using the Treatment Emergent Symptom Scale (TESS). Results: The participants showed significant improvements in the 2-back, 3-back, cpt-3, and cpt-4 tasks (all p < 0.001), with peak effect sizes observed at 2-3 weeks post-intervention (Cohen's d = 0.84-1.26). Lower baseline performance predicted greater improvement. The intervention was well-tolerated; three (6.3%) participants reported mild adverse events (TESS scores ≤2), all of which resolved spontaneously. Conclusions: tPBM is effective and well-tolerated for improving WM and attention in adults with ADHD, suggesting its potential use as a non-pharmacological approach for ADHD management.
Collapse
Affiliation(s)
- Qing-Juan Lai
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Ying Chen
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Lu Liu
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Hai-Mei Li
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Mei-Rong Pan
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Yu-Feng Wang
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Hai-Jing Niu
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qiu-Jin Qian
- NHC Key Laboratory of Mental Health, Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| |
Collapse
|
5
|
Rodrigues Salles G, Granato AEC, Viero FT, Pacheco-Soares C, Ferreira ST, Porcionatto M, Ulrich H. Self-assembly and 3D Bioprinting of Neurospheres and Evaluation of Caffeine and Photobiomodulation Effects in an Alzheimer's Disease In Vitro Model. Stem Cell Rev Rep 2025; 21:988-1000. [PMID: 40198478 DOI: 10.1007/s12015-025-10850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/10/2025]
Abstract
Several in vitro models of Alzheimer's disease (AD) rely on 2D cell culture, and, more recently, 3D cultures represented by free-floating neurospheres have been used as models for the disease. The advantage of 3D over 2D cell culture is that cell-extracellular matrix and cell-cell interactions can be assessed, better representing the molecular and cellular hallmarks of the disease. In the current study, we developed two complementary 3D neurosphere models using SH-SY5Y human neuroblastoma cells to investigate AD pathology and evaluate potential therapies. First, self-assembled neurospheres were exposed to hydrogen peroxide (H₂O₂) and amyloid-beta oligomers (AβOs), inducing AD-like features such as increased production of reactive oxygen species (ROS), amyloid aggregation, and apoptosis. Treatment with caffeine or photobiomodulation (PBM) using LED irradiation significantly reduced Aβ1-42 accumulation, ROS generation, and decreased apoptosis markers. Second, 3D bioprinting of SH-SY5Y cells resulted in neurospheres with enhanced cellular organization and differentiation. These findings emphasize the advantages of 3D models for studying neurodegeneration and evaluating therapeutic strategies, bridging the gap between traditional 2D cultures and complex in vitro systems.
Collapse
Affiliation(s)
- Geisa Rodrigues Salles
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
- Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Alessandro E C Granato
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil
| | - Fernanda Tibolla Viero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil
| | - Cristina Pacheco-Soares
- Institute of Research and Development, University of Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Sérgio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Marimelia Porcionatto
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
- National Institute of Science and Technology in Modeling Human Complex Diseases with 3D Platforms (INCT Model3D), São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
6
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
7
|
Barrett DW, Davis RE, Siegel-Ramsay JE, Bichlmeier A, Almeida JRC, Gonzalez-Lima F. Cognitive improvement and prefrontal network interactions in individuals with remitted bipolar disorder after transcranial infrared laser stimulation. Front Psychiatry 2025; 16:1547230. [PMID: 39950176 PMCID: PMC11822565 DOI: 10.3389/fpsyt.2025.1547230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Background Converging evidence suggests that bipolar disorder (BD) involves mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism associated with cognitive impairment, which persists in remitted BD individuals. Transcranial infrared laser stimulation (TILS) provides safe, non-invasive brain stimulation that enhances PFC metabolism via photobiomodulation of mitochondrial respiration and tissue oxygenation. We tested the hypothesis that the neurocognitive deficits found in BD may be ameliorated by TILS treatments. Methods This is the first study to explore neurocognitive effects of repeated TILS administration in BD. Using an open-label design, 29 individuals with remitted BD received six weekly TILS treatments. Working memory and attention were assessed with trail-making and 2-back tasks sensitive to TILS cognitive effects in individuals with BD. Changes in PFC network interactions were measured with functional near-infrared spectroscopy (fNIRS) because this method can measure TILS effects on oxygen metabolism in the PFC of individuals with BD. Results Participants reported no adverse effects from treatment, confirming the safety of this intervention in individuals with BD. Cognitive test results showed that in people with remitted BD, TILS was effective at improving cognition, i.e., enhanced speed and accuracy in tasks reflecting cognitive flexibility, working memory, and attentional control. Antipsychotic medication improved TILS cognitive effects. The fNIRS results showed a significant reduction in PFC network correlations of oxygenated hemoglobin changes driven by cognitive task performance. The right-hemisphere frontopolar cortex showed greater TILS effects than its left-hemisphere counterpart. Conclusions Repeated TILS is a safe intervention to improve cognition in people with remitted BD. Continued antipsychotic medication may have contributed to the cognitive improvement. To confirm TILS efficacy, a sham-controlled, double-blinded randomized trial is needed. Clinical trial registration https://clinicaltrials.gov/, identifier NCT05354895.
Collapse
Affiliation(s)
- Douglas W. Barrett
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Roger E. Davis
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer E. Siegel-Ramsay
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - Amy Bichlmeier
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - Jorge R. C. Almeida
- Bipolar Disorder Center, Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, TX, United States
| | - F. Gonzalez-Lima
- Departments of Psychology, Psychiatry and Behavioral Sciences, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
de Morais Garcez E, Baptista A, Hamblin MR, Suzuki SS, Garcez A, Nunez SC, Navarro RS, Bassoto T, Garcez AS. Effects of transcranial photobiomodulation on fine motor skills in boccia para-athletes. Photochem Photobiol 2025. [PMID: 39838713 DOI: 10.1111/php.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
This study investigated the effects of transcranial photobiomodulation (t-PBM) on para-athletes' manual dexterity and intralimbal coordination. Six para-athletes from a Boccia Team participated. t-PBM was administered using a LED helmet with 204 LEDs (660 and 850 nm) emitting 10 mW each, delivering 9 J/cm2 per LED during 15-min sessions three times a week. The trial lasted 2 weeks, with baseline, placebo treatment, and post-treatment assessments. Manual dexterity was measured by Box and Ball Test (BBLT), and intralimbal coordination by discrete and continuous horizontal and vertical touch tests. Results showed significant improvements in manual dexterity for the t-PBM group compared to the placebo. Discrete vertical touch tests showed reduced time to perform movements, and continuous vertical touch tests showed increased movement frequency in the t-PBM group. No significant improvements were observed in the placebo group. t-PBM was shown to be a potentially effective treatment, with significant benefits in fine motor skills.
Collapse
Affiliation(s)
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg-Doornfontein Campus, Doornfontein, South Africa
| | - Selly S Suzuki
- Laboratory of Lasers, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | - Aguinaldo Garcez
- Department of Bioengeneering, Universidade Brasil, São Paulo, Brazil
| | | | - Ricardo S Navarro
- Department of Bioengeneering, Universidade Brasil, São Paulo, Brazil
| | - Thamiris Bassoto
- Laboratory of Lasers, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | | |
Collapse
|
9
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Marinho MAG, da Silva Marques M, de Oliveira Vian C, de Moraes Vaz Batista Filgueira D, Horn AP. Photodynamic therapy with curcumin and near-infrared radiation as an antitumor strategy to glioblastoma cells. Toxicol In Vitro 2024; 100:105917. [PMID: 39142446 DOI: 10.1016/j.tiv.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma is a malignant neoplasm that develops in the central nervous system and is characterized by high rates of cell proliferation and invasion, presenting resistance to treatments and a poor prognosis. Photodynamic therapy (PDT) is a therapeutic modality that can be applied in oncological cases and stands out for being less invasive. Photosensitizers (PS) of natural origin gained prominence in PDT. Curcumin (CUR) is a natural compound that has been used in PDT, considered a promising PS. In this work, we evaluated the effects of PDT-mediated CUR and near-infrared radiation (NIR) in glioblastoma cells. Through trypan blue exclusion analysis, we chose the concentration of 5 μM of CUR and the dose of 2 J/cm2 of NIR that showed better responses in reducing the viable cell number in the C6 cell line and did not show cytotoxic/cytostatic effects in the HaCat cell line. Our results show that there is a positive interaction between CUR and NIR as a PDT model since there was an increase in ROS levels, a decrease in cell proliferation, increase in cytotoxicity with cell death by autophagy and necrosis, in addition to the presence of oxidative damage to proteins. These results suggest that the use of CUR and NIR is a promising strategy for the antitumor application of PDT.
Collapse
Affiliation(s)
- Marcelo Augusto Germani Marinho
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil.
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Camila de Oliveira Vian
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Cultura Celular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil; Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96210-900, Brazil
| |
Collapse
|
11
|
Kalampouka I, Mould RR, Botchway SW, Mackenzie AM, Nunn AV, Thomas EL, Bell JD. Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400046. [PMID: 39155124 DOI: 10.1002/jbio.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 08/20/2024]
Abstract
Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm2 NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%-203.2%) but not in non-cancer cells (p > 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (p < 0.05) and mitochondrial membrane potential (p < 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.
Collapse
Affiliation(s)
- I Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - R R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - S W Botchway
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A M Mackenzie
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
- The Guy Foundation - The Guy Foundation Family Trust, Beaminster, UK
| | - E L Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - J D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
12
|
Sinaei M, Sekhavat S, Zafari J, Moradzadegan A. The Effect of Photobiomodulation on the Conditioned Media of 3T3-L1 Cells in the Treatment of Breast Cancer. J Lasers Med Sci 2024; 15:e22. [PMID: 39188928 PMCID: PMC11345795 DOI: 10.34172/jlms.2024.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/05/2024] [Indexed: 08/28/2024]
Abstract
Introduction: Breast cancer ranks among the most prevalent malignancies, and its prompt diagnosis significantly amplifies the prospects of successful treatment. Approximately one in seven women will experience a breast cancer diagnosis in their lifetime. Stromal cells and their secreted factors exert various effects on tumor growth, impacting proliferation, invasion, and metastasis. Research has emphasized the significant impact of proteins secreted by adipose tissue on breast cancer proliferation, surpassing the influence of factors released by other cell types. Yet, the specific transcription factors and cofactors involved in adipokine expression in the tumor microenvironment remain enigmatic. Methods: In this study, adipocyte cells were cultured and exposed to 980 nm and 650 nm Photobiomodulation. The MDA-MD-231 cells (triple negative cancer cell line) were cultured with a conditioned medium from laser-treated cells. The real-time assay was employed to analyze the gene expression level changes involved in apoptosis. Results: Results showed that the irradiated conditioned medium at 980 nm and 650 nm caused a reduction in cell viability of cancer cells. Conversely, the conditioned medium from the irradiated cells triggered an increase in the expression of Caspase 3, Caspase 9, and BAX2 genes, alongside a decrease in BCL2 gene expression. Conclusion: The findings highlighted the potential of the laser-treated conditioned medium to induce apoptosis pathways in cancer cells, demonstrating a promising avenue for further research in utilizing low-level laser therapy in breast cancer treatment.
Collapse
Affiliation(s)
- Maryam Sinaei
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Saba Sekhavat
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atousa Moradzadegan
- Department of Experimental Sciences, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
13
|
Zeng J, Wang C, Chai Y, Lei D, Wang Q. Can transcranial photobiomodulation improve cognitive function in TBI patients? A systematic review. Front Psychol 2024; 15:1378570. [PMID: 38952831 PMCID: PMC11215173 DOI: 10.3389/fpsyg.2024.1378570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technology which has become a promising therapy for treating many brain diseases. Although it has been confirmed in studies targeting neurological diseases including Alzheimer's and Parkinson's that tPBM can improve cognitive function, the effectiveness of interventions targeting TBI patients remains to be determined. This systematic review examines the cognitive outcomes of clinical trials concerning tPBM in the treatment of traumatic brain injury (TBI). Methods We conducted a systematic literature review, following the PRISMA guidelines. The PubMed, Web of Science, Scopus, EMBASE, and Cochrane Library databases were searched before October 31, 2023. Results The initial search retrieved 131 articles, and a total of 6 studies were finally included for full text-analysis after applying inclusion and exclusion criteria. Conclusion Results showed improvements in cognition for patients with chronic TBI after tPBM intervention. The mechanism may be that tPBM increases the volume of total cortical gray matter (GM), subcortical GM, and thalamic, improves cerebral blood flow (CBF), functional connectivity (FC), and cerebral oxygenation, improving brain function. However, due to the significant heterogeneity in application, we cannot summarize the optimal parameters for tPBM treatment of TBI. In addition, there is currently a lack of RCT studies in this field. Therefore, given this encouraging but uncertain finding, it is necessary to conduct randomized controlled clinical trials to further determine the role of tPBM in cognitive rehabilitation of TBI patients.
Collapse
Affiliation(s)
- Jia Zeng
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Chen Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuan Chai
- Xinyang Central Hospital, Xinyang, China
| | - Danyun Lei
- Department of Physical Education, Xinyang University, Xinyang, China
| | - Qiuli Wang
- Independent Researcher, Xinyang, Henan Province, China
| |
Collapse
|
14
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
15
|
Pruitt T, Davenport EM, Proskovec AL, Maldjian JA, Liu H. Simultaneous MEG and EEG source imaging of electrophysiological activity in response to acute transcranial photobiomodulation. Front Neurosci 2024; 18:1368172. [PMID: 38817913 PMCID: PMC11137218 DOI: 10.3389/fnins.2024.1368172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that improves human cognition. The effects of tPBM of the right forehead on neurophysiological activity have been previously investigated using EEG in sensor space. However, the spatial resolution of these studies is limited. Magnetoencephalography (MEG) is known to facilitate a higher spatial resolution of brain source images. This study aimed to image post-tPBM effects in brain space based on both MEG and EEG measurements across the entire human brain. Methods MEG and EEG scans were concurrently acquired for 6 min before and after 8-min of tPBM delivered using a 1,064-nm laser on the right forehead of 25 healthy participants. Group-level changes in both the MEG and EEG power spectral density with respect to the baseline (pre-tPBM) were quantified and averaged within each frequency band in the sensor space. Constrained modeling was used to generate MEG and EEG source images of post-tPBM, followed by cluster-based permutation analysis for family wise error correction (p < 0.05). Results The 8-min tPBM enabled significant increases in alpha (8-12 Hz) and beta (13-30 Hz) powers across multiple cortical regions, as confirmed by MEG and EEG source images. Moreover, tPBM-enhanced oscillations in the beta band were located not only near the stimulation site but also in remote cerebral regions, including the frontal, parietal, and occipital regions, particularly on the ipsilateral side. Discussion MEG and EEG results shown in this study demonstrated that tPBM modulates neurophysiological activity locally and in distant cortical areas. The EEG topographies reported in this study were consistent with previous observations. This study is the first to present MEG and EEG evidence of the electrophysiological effects of tPBM in the brain space, supporting the potential utility of tPBM in treating neurological diseases through the modulation of brain oscillations.
Collapse
Affiliation(s)
- Tyrell Pruitt
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | - Amy L. Proskovec
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Joseph A. Maldjian
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
16
|
Fradkin Y, De Taboada L, Naeser M, Saltmarche A, Snyder W, Steingold E. Transcranial photobiomodulation in children aged 2-6 years: a randomized sham-controlled clinical trial assessing safety, efficacy, and impact on autism spectrum disorder symptoms and brain electrophysiology. Front Neurol 2024; 15:1221193. [PMID: 38737349 PMCID: PMC11086174 DOI: 10.3389/fneur.2024.1221193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.
Collapse
Affiliation(s)
- Yuliy Fradkin
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | | | - Margaret Naeser
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | | | | | |
Collapse
|
17
|
Razzaghi M, Sheibani F, Kimia N, Razzaghi Z, Chenari Z, Ashrafi F, Barati M, Advani S. Photobiomodulation's potential as a non-invasive therapy for alzheimer's disease and minimal cognitive impairment: A 12-week investigation. Photodiagnosis Photodyn Ther 2024; 46:103991. [PMID: 38367922 DOI: 10.1016/j.pdpdt.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD), undergoing a faster increase in occurrence than any other type of dementia, lacks a curative remedy despite advanced discoveries. To explore the realm of non-pharmacologic therapies, our study evaluates the 12-week impact of non-invasive Photobiomodulation (PBM) on cognitive and psychological aspects in individuals with AD and minimal cognitive impairment (MCI). The urgency of exploring innovative interventions is underscored by the rising occurrence of AD, particularly in regions with aging populations like Iran. METHOD 13 patients (6 case patients and 7 control patients) participated in the study. Sham treatment was administered to seven individuals, while another six received PBM treatment over 12 weeks, with daily at-home LED (810 nm wavelength) device usage lasting 20 min. Initially, the patient and their caregiver participated in two hospital sessions to acquaint them with the device's operation. RESULTS The mean reduction of Hamilton's anxiety questionnaire score was 3.33±6.08 in the intervention group and 2.00±3.46 in the control group (p-value=0.836). The mean score reduction of the Hamilton depression questionnaire was 3.16±3.86 in the intervention group and 4.85±6.20 in the control group (p-value=0.836). The mean score of the DAD questionnaire in the intervention group before the study was 25.50±13.13 and after the intervention was 29.83±12.12 (p-value=0.084) and in the control group it was 29.71±8.19 and after the study was 29±0.972 (p-value = 0.526). The mean changes in the DAD questionnaire score in the intervention group increased by 4.33±4.92 and decreased by 0.71±2.81 in the control group (p-value=0.041). CONCLUSION In general, PBM appears to hold promise as a potentially safe method for enhancing the cognitive, functional, and psychological status of individuals with Alzheimer's disease, though further research with larger sample size and cautious interpretation are warranted.
Collapse
Affiliation(s)
- Mohammadreza Razzaghi
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sheibani
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Kimia
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Chenari
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional neurosurgery research center, Shahid beheshti university of medical sciences, Tehran, Iran
| | - Maryam Barati
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Laser application in medical Sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
19
|
Joshi H, Sinha P, Bowers D, John JP. Dose response of transcranial near infrared light stimulation on brain functional connectivity and cognition in older adults-A randomized comparison. JOURNAL OF BIOPHOTONICS 2024; 17:e202300215. [PMID: 37776079 DOI: 10.1002/jbio.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Photobiomodulation, also called low-level light therapy, has been reported in animal studies to have an effect on brain activity and cognition. However, studies in humans regarding its effect on cognition and brain functional connectivity, and the required dose threshold for achieving the same have been very limited. We compared the effects of different doses of photobiomodulation (PBM) on cognition and resting state brain functional connectivity in 25 cognitively normal adults aged 55-70 years. They were randomized to a single session of the sham group, "low-dose" and "high-dose" groups receiving NIR light with transcranial fluence of 26 and 52 J/cm2 respectively, and intranasal fluence of 9 and 18 J/cm2 respectively. There was a significant increase in resting state functional connectivity of the left superior frontal gyrus (SFG) with the left planum temporale (PT), p = 0.0016, and with the left inferior frontal gyrus, pars triangularis, p = 0.0235 in the "high-dose" group only compared to the "sham" group. There was also a significant improvement in visual search and processing speed (p = 0.012) in the "high-dose" group. Replication of these findings in an adequately powered randomized sham-controlled study in healthy older adults can pave the way for clinical application of NIRL as a therapeutic modality in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Preeti Sinha
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Non-invasive Brain Stimulation Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dawn Bowers
- Department of Clinical & Health Psychology, College of Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida, USA
- Cognitive Neuroscience Laboratory, Department of Neurology, Fixel Center of Neurological Diseases, University of Florida Health Science Center, Gainesville, Florida, USA
| | - John P John
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Ji Q, Yan S, Ding J, Zeng X, Liu Z, Zhou T, Wu Z, Wei W, Li H, Liu S, Ai S. Photobiomodulation improves depression symptoms: a systematic review and meta-analysis of randomized controlled trials. Front Psychiatry 2024; 14:1267415. [PMID: 38356614 PMCID: PMC10866010 DOI: 10.3389/fpsyt.2023.1267415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 02/16/2024] Open
Abstract
Background Depression is a common mental illness that is widely recognized by its lack of pleasure, fatigue, low mood, and, in severe cases, even suicidal tendencies. Photobiomodulation (PBM) is a non-invasive neuromodulation technique that could treat patients with mood disorders such as depression. Methods A systematic search of ten databases, including randomized controlled trials (RCTs) for depression, was conducted from the time of library construction to September 25, 2023. The primary outcome was depression. The secondary outcome was sleep. Meta-analysis was performed using RevMan (version 5.4) and Stata (version 14.0). Subgroup analyses were performed to identify sources of heterogeneity. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results Three thousand two hundred and sixty-five studies were retrieved from the database and screened for inclusion in eleven trials. The forest plot results demonstrated that PBM alleviated depression (SMD = -0.55, 95% CI [-0.75, -0.35], I2 = 46%). But it is not statistically significant for patients' sleep outcomes (SMD = -0.82, 95% CI [-2.41, 0.77], I2 = 0%, p > 0.05). Subgroup analysis showed that s-PBM was superior to t-PBM in relieving symptoms of depression. The best improvement for t-PBM was achieved using a wavelength of 823 nm, fluence of 10-100 J/cm2, irradiance of 50-100 mW/cm2, irradiance time of 30 min, treatment frequency < 3/week, and number of treatments >15 times. The best improvement for s-PBM was achieved using a wavelength of 808 nm, fluence ≤1 J/cm2, irradiance of 50-100 mW/cm2, irradiance time ≤ 5 min, treatment frequency ≥ 3/week, number of treatments >15 times. All results had evidence quality that was either moderate or very low, and there was no bias in publication. Conclusion We conclude that PBM is effective in reducing depression symptoms in patients. However, the current number of studies is small, and further studies are needed to extend the current analysis results. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023444677.
Collapse
Affiliation(s)
- Qipei Ji
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichang Yan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Ding
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xin Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Zhou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuorao Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Liu
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Shuangchun Ai
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
21
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
22
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
23
|
O’Donnell CM, Barrett DW, O’Connor P, Gonzalez-Lima F. Prefrontal photobiomodulation produces beneficial mitochondrial and oxygenation effects in older adults with bipolar disorder. Front Neurosci 2023; 17:1268955. [PMID: 38027522 PMCID: PMC10644301 DOI: 10.3389/fnins.2023.1268955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
There is growing evidence of mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism in bipolar disorder (BD). Older adults with BD exhibit greater decline in PFC-related neurocognitive functions than is expected for age-matched controls, and clinical interventions intended for mood stabilization are not targeted to prevent or ameliorate mitochondrial deficits and neurocognitive decline in this population. Transcranial infrared laser stimulation (TILS) is a non-invasive form of photobiomodulation, in which photons delivered to the PFC photo-oxidize the mitochondrial respiratory enzyme, cytochrome-c-oxidase (CCO), a major intracellular photon acceptor in photobiomodulation. TILS at 1064-nm can significantly upregulate oxidized CCO concentrations to promote differential levels of oxygenated vs. deoxygenated hemoglobin (HbD), an index of cerebral oxygenation. The objective of this controlled study was to use non-invasive broadband near-infrared spectroscopy to assess if TILS to bilateral PFC (Brodmann area 10) produces beneficial effects on mitochondrial oxidative energy metabolism (oxidized CCO) and cerebral oxygenation (HbD) in older (≥50 years old) euthymic adults with BD (N = 15). As compared to sham, TILS to the PFC in adults with BD increased oxidized CCO both during and after TILS, and increased HbD concentrations after TILS. By significantly increasing oxidized CCO and HbD concentrations above sham levels, TILS has the potential ability to stabilize mitochondrial oxidative energy production and prevent oxidative damage in the PFC of adults with BD. In conclusion, TILS was both safe and effective in enhancing metabolic function and subsequent hemodynamic responses in the PFC, which might help alleviate the accelerated neurocognitive decline and dysfunctional mitochondria present in BD.
Collapse
Affiliation(s)
- Courtney M. O’Donnell
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Patrick O’Connor
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
24
|
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int J Mol Sci 2023; 24:14293. [PMID: 37762594 PMCID: PMC10531845 DOI: 10.3390/ijms241814293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Collapse
Affiliation(s)
| | - Junle Qu
- Center for Biomedical Optics and Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
25
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
26
|
Wade ZS, Barrett DW, Davis RE, Nguyen A, Venkat S, Gonzalez-Lima F. Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front Neurosci 2023; 17:1243527. [PMID: 37700747 PMCID: PMC10493319 DOI: 10.3389/fnins.2023.1243527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction This is the first study mapping the duration of action of in vivo photobiomodulation (PBM) on cytochrome-c-oxidase (CCO). In cellular bioenergetics, CCO is the terminal rate-limiting enzyme in the mitochondrial electron transport chain, which catalyzes oxygen utilization for aerobic energy production. PBM using transcranial infrared laser stimulation (TILS) is a promising intervention for non-invasively modulating CCO in the brain. TILS of the human prefrontal cortex directly causes CCO photo-oxidation, which is associated with increased cerebral oxygenation and improved cognition. Methods This experiment aimed to map the duration of action of in vivo PBM on CCO activity in discrete neuroanatomic locations within rat brains up to 4 weeks after a single TILS session (50 s, 1064 nm CW, 250 mW/cm2). Control brains from rats treated with a sham session without TILS (laser off) were compared to brains from TILS-treated rats that were collected 1 day, 2 weeks, or 4 weeks post-TILS. Cryostat sections of the 36 collected brains were processed using quantitative enzyme histochemistry and digitally imaged. Densitometric readings of 28 regions of interest were recorded and converted to CCO activity units of oxygen utilization using calibration standards. Data analysis (ANCOVA) compared each laser-treated group to sham with whole-brain average as a covariate. Results The prefrontal infralimbic cortex showed the earliest significant increase in CCO activity between 1-day post-TILS and sham groups, which continued elevated for 2-4 weeks post-TILS. Significant differences in CCO activity between 2-weeks and sham groups were also found in the lateral septum, accumbens core, CA3 of the hippocampus, and the molecular layer of the hippocampus. The medial amygdala showed a significant decrease in CCO activity between 4-weeks and sham. Further analyses showed significant inter-regional CCO activity correlations among the brain regions as the result of TILS, with the most pronounced changes at 4-weeks post-stimulation. Discussion The time course of changes in CCO activity and network connectivity suggested that TILS caused different neuroplasticity types of bioenergetic changes at different time scales, depending on brain region and its depth from the cortex. In conclusion, this controlled CCO histochemical study demonstrated a long-lasting duration of action of PBM in the rat brain.
Collapse
Affiliation(s)
| | | | | | | | | | - F. Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
27
|
Paolillo FR, Luccas GAA, Parizotto NA, Paolillo AR, de Castro Neto JC, Bagnato VS. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200260. [PMID: 36520347 DOI: 10.1002/jbio.202200260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Post-stroke sequelae includes loss functions, such as cognitive and sensory-motor which lead to emotional and social problems, reducing quality of life and well-being. The main aim of our study was to investigate the effects of transcranial laser photobiomodulation together with neuromuscular electrical stimulation (NMES) in post-stroke patients. We performed a clinical trial and an ex vivo study. For the clinical trial, hemiplegic patients were separated into two groups: Treated Group (TG): Hemiplegics treated with transcranial laser (on) associated with NMES (on) and; Placebo Group (PG): Hemiplegics treated with placebo transcranial laser (off) associated with NMES (on). The cluster prototype includes 12 diode laser beams (4 × 660 nm, 4 × 808 nm and 4 × 980 nm) with average power of 720 mW per cluster applied during one minute, leading to 43.2 J energy per cluster. Fifteen regions for all head were irradiated by cluster, leading to 648 J energy per session. The parameters of NMES of the paretic limbs to generate extension wrist and ankle dorsiflexion were symmetrical biphasic rectangular waveforms, 50 Hz frequency, 250 μs pulse duration, and adjustable intensity to maintain the maximum range of motion (amplitude between 0 and 150 mA). Our clinical trial showed improvement of cognitive function, pain relief, greater manual dexterity, enhancement of physical and social-emotional health which lead to better quality of life and well-being. There was also increased temperature in the treated regions with laser and NMES. For the ex vivo study, the distribution of infrared and red radiation after penetration through the cranium and hemihead of cadavers were showed. Therefore, transcranial laser photobiomodulation associated with NMES can be an important therapeutic resource for rehabilitation after stroke.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Group of Technology Applied to Health and Motricity Sciences, State University of Minas Gerais (UEMG), Passos, Brazil
| | | | - Nivaldo Antonio Parizotto
- Biomedical Engineering Program, Research and Development Institute, University Brasil, São Paulo, Brazil
| | | | | | | |
Collapse
|
28
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
29
|
Zaizar ED, Papini S, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy on pathological fear: a randomized clinical trial. Psychol Med 2023; 53:908-917. [PMID: 34284836 PMCID: PMC9976021 DOI: 10.1017/s0033291721002270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preclinical findings suggest that transcranial infrared laser stimulation (TILS) improves fear extinction learning and cognitive function by enhancing prefrontal cortex (PFC) oxygen metabolism. These findings prompted our investigation of treating pathological fear using this non-invasive stimulation approach either alone to the dorsolateral PFC (dlPFC), or to the ventromedial PFC (vmPFC) in combination with exposure therapy. METHODS Volunteers with pathological fear of either enclosed spaces, contamination, public speaking, or anxiety-related bodily sensations were recruited for this randomized, single-blind, sham-controlled trial with four arms: (a) Exposure + TILS_vmPFC (n = 29), (b) Exposure + sham TILS_vmPFC (n = 29), (c) TILS_dlPFC alone (n = 26), or (d) Sham TILS _dlPFC alone (n = 28). Post-treatment assessments occurred immediately following treatment. Follow-up assessments occurred 2 weeks after treatment. RESULTS A total of 112 participants were randomized [age range: 18-63 years; 96 females (85.71%)]. Significant interactions of Group × Time and Group × Context indicated differential treatment effects on retention (i.e. between time-points, averaged across contexts) and on generalization (i.e. between contexts, averaged across time-points), respectively. Among the monotherapies, TILS_dlPFC outperformed SHAM_dlPFC in the initial context, b = -13.44, 95% CI (-25.73 to -1.15), p = 0.03. Among the combined treatments, differences between EX + TILS_vmPFC and EX + SHAM_vmPFC were non-significant across all contrasts. CONCLUSIONS TILS to the dlPFC, one of the PFC regions implicated in emotion regulation, resulted in a context-specific benefit as a monotherapy for reducing fear. Contrary to prediction, TILS to the vmPFC, a region implicated in fear extinction memory consolidation, did not enhance exposure therapy outcome.
Collapse
Affiliation(s)
- Eric D. Zaizar
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - Santiago Papini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Michael J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
30
|
Zhao C, Li D, Kong Y, Liu H, Hu Y, Niu H, Jensen O, Li X, Liu H, Song Y. Transcranial photobiomodulation enhances visual working memory capacity in humans. SCIENCE ADVANCES 2022; 8:eabq3211. [PMID: 36459562 PMCID: PMC10936045 DOI: 10.1126/sciadv.abq3211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Transcranial photobiomodulation (tPBM) is a safe and noninvasive intervention that has shown promise for improving cognitive performance. Whether tPBM can modulate brain activity and thereby enhance working memory (WM) capacity in humans remains unclear. In this study, we found that 1064-nm tPBM applied to the right prefrontal cortex (PFC) improves visual working memory capacity and increases occipitoparietal contralateral delay activity (CDA). The CDA set-size effect during retention mediated the effect between the 1064-nm tPBM and subsequent WM capacity. The behavioral benefits and the corresponding changes in the CDA set-size effect were absent with tPBM at a wavelength of 852 nm or with stimulation of the left PFC. Our findings provide converging evidence that 1064-nm tPBM applied to the right PFC can improve WM capacity.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Guangdong, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hongyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Guangdong, China
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Monteiro F, Carvalho Ó, Sousa N, Silva FS, Sotiropoulos I. Photobiomodulation and visual stimulation against cognitive decline and Alzheimer's disease pathology: A systematic review. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12249. [PMID: 36447479 PMCID: PMC9695760 DOI: 10.1002/trc2.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Introduction Given the ineffectiveness of the available drug treatment against Alzheimer disease (AD), light-based therapeutic modalities have been increasingly receiving attention with photobiomodulation (PBM) and, more recently, visual stimulation (VS) being among the most promising approaches. However, the PBM and VS light parameters tested so far, as well as their outcomes, vary a lot with conflicting results being reported. Methods Based on Scopus, PubMed, and Web of Science databases search, this systematic review summarizes, compares, and discusses 43 cell, animal, and human studies of PBM and VS related to cognitive decline and AD pathology. Results Preclinical work suggests that PBM with 640±30-nm light and VS at 40 Hz attenuates Aβ and Tau pathology and improves neuronal and synaptic plasticity with most studies pointing towards enhancement of degradation/clearance mechanisms in the brain of AD animal models. Despite the gap of the translational evidence for both modalities, the few human studies performed so far support the use of PBM at 810-870 nm light pulsing at 40 Hz for improving brain network connectivity and memory in older subjects and AD patients, while 40 Hz VS in humans seems to improve cognition; further clinical investigation is urgently required to clarify the beneficial impact of PBM and VS in AD patients. Discussion This review highlights PBM and VS as promising light-based therapeutic approaches against AD brain neuropathology and related cognitive decline, clarifying the most effective light parameters for further preclinical and clinical testing and use. Highlights Light-based brain stimulation produces neural entrainment and reverts neuronal damageBrain PBM and VS attenuate AD neuropathologyPMB and VS are suggested to improve cognitive performance in AD patients and animal modelsLight stimulation represents a promising therapeutic strategy against neurodegeneration.
Collapse
Affiliation(s)
- Francisca Monteiro
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Nuno Sousa
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
| | - Filipe S. Silva
- Center for Microelectromechanical Systems (CMEMS)Campus AzurémUniversity of MinhoGuimarãesPortugal
- LABBELS—Associate LaboratoryUniversity of MinhoGuimarãesPortugal
| | - Ioannis Sotiropoulos
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de GualtarBragaPortugal
- Institute of Biosciences and ApplicationsNCSR DemokritosAthensGreece
| |
Collapse
|
32
|
Shahdadian S, Wang X, Wanniarachchi H, Chaudhari A, Truong NCD, Liu H. Neuromodulation of brain power topography and network topology by prefrontal transcranial photobiomodulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac9ede. [PMID: 36317341 PMCID: PMC9795815 DOI: 10.1088/1741-2552/ac9ede] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Authors to whom any correspondence should be addressed,
| |
Collapse
|
33
|
[Epidural photobiomodulation accelerates the drainage of brain interstitial fluid and its mechanism]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022. [PMID: 36241244 PMCID: PMC9568398 DOI: 10.19723/j.issn.1671-167x.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the effect of photobiomodulation (PBM) on the drainage of brain interstitial fluid (ISF) and to investigate the possible mechanism of the positive effect of PBM on Alzheimer's disease (AD). METHODS Twenty-four SD male rats were randomly divided into PBM group (n=12), sham PBM group (n=6), and negative control group (n=6). According to the injection site of tracer, the PBM group was further divided into PBM-ipsilateral traced group (n=6) and PBM-contralateral traced group (n=6). Rats in the PBM group and the sham PBM group were exposed to the dura minimally invasively on the skull corresponding to the frontal cortical area reached by ISF drainage from caudate nucleus region. The PBM group was irradiated by using 630 nm red light (5-6 mW/cm2), following an irradiation of 5 min with a 2 min pause, and a total of 5 times; the sham PBM group was kept in the same position for the same time using the light without power. The negative control group was kept without any measure. After PBM, tracer was injected into caudate nucleus of each group. The changes of ISF drainage in caudate nucleus were observed according to the diffusion and distribution of tracer molecule by tracer-based magnetic resonance imaging, and the structural changes of brain extracellular space (ECS) were analyzed by diffusion rate in ECS-mapping (DECS-mapping) technique. Finally, parameters reflecting the structure of brain ECS and the drainage of ISF were obtained: volume fraction (α), tortuo-sity (λ), half-life (T1/2), and DECS. The differences of parameters among different groups were compared to analyze the effect of PBM on brain ECS and ISF. One-Way ANOVA post hoc tests and independent sample t test were used for statistical analysis. RESULTS The parameters including T1/2, DECS, and λ were significantly different among the PBM-ipsilateral traced group, the PBM-contralateral traced group, and the sham PBM group (F=79.286, P < 0.001; F=13.458, P < 0.001; F=10.948, P=0.001), while there was no difference in the parameter α of brain ECS among the three groups (F=1.217, P=0.324). Compared with the sham PBM group and the PBM-contralateral traced group, the PBM-ipsilateral traced group had a significant decrease in the parameter T1/2 [(45.45±6.76) min vs. (76.01±3.44) min, P < 0.001; (45.45±6.76) min vs. (78.07±4.27) min, P < 0.001], representing a significant acceleration of ISF drainage; the PBM-ipsilateral traced group had a significant increase in the parameter DECS [(4.51±0.77)×10-4 mm2/s vs. (3.15±0.44)×10-4 mm2/s, P < 0.001; (4.51±0.77)×10-4 mm2/s vs. (3.01±0.38)×10-4 mm2/s, P < 0.001], representing a significantly increased molecular diffusion rate of in the brain ECS; the PBM-ipsilateral traced group had a significant decrease in the parameter λ (1.51±0.21 vs. 1.85±0.12, P=0.001; 1.51±0.21 vs. 1.89±0.11, P=0.001), representing a significant decrease in the degree of tortuosity in the brain ECS. CONCLUSION PBM can regulate the brain ISF drainage actively, which may be one of the potential mechanisms of the effect of PBM therapy on AD. This study provides a new method for enhancing the brain function via ECS pathway.
Collapse
|
34
|
Blivet G, Relano-Gines A, Wachtel M, Touchon J. A Randomized, Double-Blind, and Sham-Controlled Trial of an Innovative Brain-Gut Photobiomodulation Therapy: Safety and Patient Compliance. J Alzheimers Dis 2022; 90:811-822. [DOI: 10.3233/jad-220467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Recent innovative non-pharmacological interventions and neurostimulation devices have shown potential for application in the treatment of Alzheimer’s disease (AD). These include photobiomodulation (PBM) therapy. Objective: This pilot study assesses the safety, compliance with, and efficacy of a brain-gut PBM therapy for mild-to-moderate AD patients. Methods: This double-blind, randomized, monocentric sham-controlled study started in 2018 and ended prematurely in 2020 due to the COVID-19 pandemic. Fifty-three mild-to-moderate AD patients were randomized, 27 in the PBM group and 26 in the sham group. All patients had 40 treatment sessions lasting 25 min each over 8 weeks and were followed for 4 weeks afterwards. Compliance with the treatment was recorded. Safety was assessed by recording adverse events (AEs), and efficacy was evaluated using neuropsychological tests. Results: The PBM therapy proved to be safe in regard to the number of recorded AEs (44% of the patients), which were balanced between the PBM and sham groups. AEs were mainly mild, and no serious AEs were reported. The majority of the patients (92.5%) were highly compliant, which confirms the feasibility of the PBM treatment. Compared to the sham patients, the PBM patients showed higher ADAS-Cog comprehension sub-scores and forward verbal spans, and lower TMT-B execution times, which suggests an improvement in cognitive functions. Conclusion: This study demonstrates the tolerability of and patient compliance with a PBM-based treatment for mild-to-moderate AD patients. It highlights encouraging efficacy trends and provides insights for the design of the next phase trial in a larger AD patient sample.
Collapse
|
35
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
36
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
37
|
Kheradmand A, Donboli S, Tanjani PT, Farhadinasab A, Tabeie F, Qutbi M, Kordmir T. Therapeutic Effects of Low-Level Laser Therapy on Cognitive Symptoms of Patients with Dementia: A Double-Blinded Randomized Clinical Trial. Photobiomodul Photomed Laser Surg 2022; 40:632-638. [DOI: 10.1089/photob.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Research Development Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Donboli
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Taheri Tanjani
- Department of Geriatric Medicine, School of Medicine, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Farhadinasab
- Department of Psychiatry, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Qutbi
- Department of Nuclear Medicine, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Kordmir
- Memory Clinic, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
39
|
Qu X, Li L, Zhou X, Dong Q, Liu H, Liu H, Yang Q, Han Y, Niu H. Repeated transcranial photobiomodulation improves working memory of healthy older adults: behavioral outcomes of poststimulation including a three-week follow-up. NEUROPHOTONICS 2022; 9:035005. [PMID: 36177151 PMCID: PMC9514540 DOI: 10.1117/1.nph.9.3.035005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Decline in cognitive ability is a significant issue associated with healthy aging. Transcranial photobiomodulation (tPBM) is an emerging non-invasive neuromodulation technique and has shown promise to overcome this challenge. AIM This study aimed to investigate the effects of seven-day repeated tPBM, compared to those of single tPBM and baseline, on improving N -back working memory in healthy older adults and to evaluate the persistent efficacy of repeated tPBM. APPROACH In a sham-controlled and within-subject design, 61 healthy older adults were recruited to participate in a longitudinal study involving an experimental baseline, seven days of tPBM treatment (12 min daily, 1064-nm laser, 250 mW / cm 2 ) in the left dorsolateral prefrontal cortex and three weeks of follow-ups. Behavioral performance in the N -back ( N = 1,2 , 3 ) was recorded poststimulation during the baseline, the first and seventh days of the tPBM session, and the three weekly follow-ups. A control group with 25 participants was included in this study to rule out the practice and placebo effects. The accuracy rate and response time were used in the statistical analysis. RESULTS Repeated and single tPBM significantly improved accuracy rate in 1- and 3-back tasks and decreased response time in 3-back compared to the baseline. Moreover, the repeated tPBM resulted in a significantly higher improvement in accuracy rate than the single tPBM. These improvements in accuracy rate and response time lasted at least three weeks following repeated tPBM. In contrast, the control group showed no significant improvement in behavioral performance. CONCLUSIONS This study demonstrated that seven-day repeated tPBM improved the working memory of healthy older adults more efficiently, with the beneficial effect lasting at least three weeks. These findings provide fundamental evidence that repeated tPBM may be a potential intervention for older individuals with memory decline.
Collapse
Affiliation(s)
- Xiujuan Qu
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Lexuan Li
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Xiaohan Zhou
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Qi Dong
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Hesheng Liu
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Qin Yang
- Xuanwu Hospital of Capital Medical University, Department of Neurology, Beijing, China
| | - Ying Han
- Xuanwu Hospital of Capital Medical University, Department of Neurology, Beijing, China
- Hainan University, School of Biomedical Engineering, Haikou, China
- Beijing Institute for Brain Disorders, Center of Alzheimer’s Disease, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haijing Niu
- Beijing Normal University, IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| |
Collapse
|
40
|
Cardoso FDS, Gonzalez-Lima F, Coimbra NC. Mitochondrial Photobiomodulation as a Neurotherapeutic Strategy for Epilepsy. Front Neurol 2022; 13:873496. [PMID: 35785362 PMCID: PMC9243228 DOI: 10.3389/fneur.2022.873496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Francisco Gonzalez-Lima
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
41
|
Wang X, Wanniarachchi H, Wu A, Liu H. Combination of Group Singular Value Decomposition and eLORETA Identifies Human EEG Networks and Responses to Transcranial Photobiomodulation. Front Hum Neurosci 2022; 16:853909. [PMID: 35620152 PMCID: PMC9127055 DOI: 10.3389/fnhum.2022.853909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial Photobiomodulation (tPBM) has demonstrated its ability to alter electrophysiological activity in the human brain. However, it is unclear how tPBM modulates brain electroencephalogram (EEG) networks and is related to human cognition. In this study, we recorded 64-channel EEG from 44 healthy humans before, during, and after 8-min, right-forehead, 1,064-nm tPBM or sham stimulation with an irradiance of 257 mW/cm2. In data processing, a novel methodology by combining group singular value decomposition (gSVD) with the exact low-resolution brain electromagnetic tomography (eLORETA) was implemented and performed on the 64-channel noise-free EEG time series. The gSVD+eLORETA algorithm produced 11 gSVD-derived principal components (PCs) projected in the 2D sensor and 3D source domain/space. These 11 PCs took more than 70% weight of the entire EEG signals and were justified as 11 EEG brain networks. Finally, baseline-normalized power changes of each EEG brain network in each EEG frequency band (delta, theta, alpha, beta and gamma) were quantified during the first 4-min, second 4-min, and post tPBM/sham periods, followed by comparisons of frequency-specific power changes between tPBM and sham conditions. Our results showed that tPBM-induced increases in alpha powers occurred at default mode network, executive control network, frontal parietal network and lateral visual network. Moreover, the ability to decompose EEG signals into individual, independent brain networks facilitated to better visualize significant decreases in gamma power by tPBM. Many similarities were found between the cortical locations of SVD-revealed EEG networks and fMRI-identified resting-state networks. This consistency may shed light on mechanistic associations between tPBM-modulated brain networks and improved cognition outcomes.
Collapse
|
42
|
O'Donnell CM, Barrett DW, Fink LH, Garcia-Pittman EC, Gonzalez-Lima F. Transcranial Infrared Laser Stimulation Improves Cognition in Older Bipolar Patients: Proof of Concept Study. J Geriatr Psychiatry Neurol 2022; 35:321-332. [PMID: 33525934 DOI: 10.1177/0891988720988906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the first study to examine if transcranial infrared laser stimulation (TILS) improves cognition in older euthymic bipolar patients, who exhibit greater cognitive decline than is expected for age-matched controls. TILS is a non-invasive novel form of photobiomodulation that augments prefrontal oxygenation and improves cognition in young adults by upregulating the mitochondrial respiratory enzyme cytochrome-c-oxidase. We used a crossover sham-controlled design to examine if TILS to bilateral prefrontal cortex produces beneficial effects on cognition in 5 euthymic bipolar patients (ages 60-85). We measured cognitive flexibility, verbal fluency, working memory, sustained attention and impulsivity with tasks that have been shown to differentiate between healthy older adults and older bipolar adults. We found TILS-induced improvements in cognitive performance on the tasks that measure cognitive flexibility and impulsivity, after 5 weekly sessions of TILS. We concluded that TILS appeared both safe and effective in helping alleviate the accelerated cognitive decline present in older bipolar patients.
Collapse
Affiliation(s)
- Courtney M O'Donnell
- Department of Psychology and Institute for Neuroscience, 7067University of Texas at Austin, TX, USA
| | - Douglas W Barrett
- Department of Psychology and Institute for Neuroscience, 7067University of Texas at Austin, TX, USA
| | - Latham H Fink
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, 12330University of Texas at Austin, TX, USA
| | - Erica C Garcia-Pittman
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, 12330University of Texas at Austin, TX, USA
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, 7067University of Texas at Austin, TX, USA.,Department of Psychiatry and Behavioral Sciences, Dell Medical School, 12330University of Texas at Austin, TX, USA
| |
Collapse
|
43
|
Cardoso FDS, Barrett DW, Wade Z, Gomes da Silva S, Gonzalez-Lima F. Photobiomodulation of Cytochrome c Oxidase by Chronic Transcranial Laser in Young and Aged Brains. Front Neurosci 2022; 16:818005. [PMID: 35368252 PMCID: PMC8971717 DOI: 10.3389/fnins.2022.818005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
In cellular bioenergetics, cytochrome c oxidase (CCO) is the enzyme responsible for oxygen consumption in the mitochondrial electron transport chain, which drives oxidative phosphorylation for adenosine triphosphate (ATP) production. CCO is also the major intracellular acceptor of photons in the light wavelengths used for photobiomodulation (PBM). Brain function is critically dependent on oxygen consumption by CCO for ATP production. Therefore, our objectives were (1) to conduct the first detailed brain mapping study of the effects of PBM on regional CCO activity, and (2) to compare the chronic effects of PBM on young and aged brains. Specifically, we used quantitative CCO histochemistry to map the differences in CCO activity of brain regions in healthy young (4 months old) and aged (20 months old) rats from control groups with sham stimulation and from treated groups with 58 consecutive days of transcranial laser PBM (810 nm wavelength and 100 mW power). We found that aging predominantly decreased regional brain CCO activity and systems-level functional connectivity, while the chronic laser stimulation predominantly reversed these age-related effects. We concluded that chronic PBM modified the effects of aging by causing the CCO activity on brain regions in laser-treated aged rats to reach levels similar to those found in young rats. Given the crucial role of CCO in bioenergetics, PBM may be used to augment brain and behavioral functions of older individuals by improving oxidative energy metabolism.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Douglas W. Barrett
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Zachary Wade
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Centro Universitário UNIFAMINAS, Muriaé, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella, Muriaé, Brazil
| | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: F. Gonzalez-Lima,
| |
Collapse
|
44
|
Nazari M, Vajed-Samiei T, Torabi N, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. The 40-Hz White Light-Emitting Diode (LED) Improves the Structure-Function of the Brain Mitochondrial KATP Channel and Respiratory Chain Activities in Amyloid Beta Toxicity. Mol Neurobiol 2022; 59:2424-2440. [PMID: 35083663 DOI: 10.1007/s12035-021-02681-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
It has been described that using noninvasive exposure to 40-Hz white light LED reduces amyloid-beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). However, the mechanisms remain to be identified. Since AD impairs mitochondrial potassium channels and respiratory chain activity, the objectives of the current study were to determine the effect of 40-Hz white light LED on structure-function of mitoKATP channel and brain mitochondrial respiratory chain activity, production of reactive oxygen species (ROS), and ΔΨm in AD. Single mitoKATP channel was considered using a channel incorporated into the bilayer lipid membrane and expression of mitoKATP-Kir6.1 subunit as a pore-forming subunit of the channel was determined using a western blot analysis in Aβ1-42 toxicity and light-treated rats. Our results indicated a severe decrease in mito-KATP channel permeation and Kir6.1 subunit expression coming from the Aβ1-42-induced neurotoxicity. Furthermore, we found that Aβ1-42-induced neurotoxicity decreased activities of complexes I and IV and increased ROS production and ΔΨm. Surprisingly, light therapy increased channel permeation and mitoKATP-Kir6.1 subunit expression. Noninvasive 40-Hz white light LED treatment also increased activities of complexes I and IV and decreased ROS production and ΔΨm up to ~ 70%. Here, we report that brain mito-KATP channel and respiratory chain are, at least in part, novel targets of 40-Hz white light LED therapy in AD.
Collapse
Affiliation(s)
- Maryam Nazari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, 1985717443, Evin, Tehran, Iran
| | - Taha Vajed-Samiei
- School of Electrical and Computer Engineering, Tehran University, Tehran, Iran
| | - Nihad Torabi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, 1985717443, Evin, Tehran, Iran.
| |
Collapse
|
45
|
Huang LD. Brighten the Future: Photobiomodulation and Optogenetics. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:36-44. [PMID: 35746943 PMCID: PMC9063588 DOI: 10.1176/appi.focus.20210025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Safe, noninvasive, and effective treatments for brain conditions are everyone's dream. Low-level light therapy (LLLT) based on the photobiomodulation (PBM) phenomenon has recently been adopted in practice, with solid scientific evidence. Optogenetics provides high spatiotemporal resolution to precisely switch on and off a particular circuitry in the brain. However, there are currently no human trials of optogenetics on the human brain. These two approaches-PBM and optogenetics-are promising photonic treatments that target the brain using completely different technologies. PBM is based on the mitochondrial reaction to the photons for up- or downregulation on the cytochrome c oxidase synthase in cellular respiration. It is safe, noninvasive, and good for long-term treatments, with wide applications using light wavelengths ranging from 650 nm to ≈1,100 nm, the red to near-infrared range. Optogenetics is based on the expression of engineered opsins on targeted tissues through viral vectors. The opsins are engineered to be sensors, actuators, or switches and could be precisely controlled by light wavelength ranging from 450 nm to ≈650 nm, the visible light range. The penetration of visible light is limited, and thus the photons cannot be applied directly outside the head without surgical means to create a physical window. PBM using near-infrared light could reach deeper tissues for light directly applied outside the head. Detailed scientific foundations and the state of the art for both technologies are reviewed. Ongoing developments are discussed to provide insight for future research and applications.
Collapse
|
46
|
Belova AN, Israelyan YA, Sushin VO, Shabanova MA, Rezenova AM. [Transcranial photobiomodulation in therapy of neurodegenerative diseases of the brain: theoretical background and clinical effectiveness]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 98:61-67. [PMID: 34965698 DOI: 10.17116/kurort20219806161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial photobiomodulation (tPBM) is a form of light therapy that uses monochromatic visible and infrared light from non-ionizing radiation sources (lasers, LEDs) placed on the scalp, forehead, or intranasally to project light directly to target areas of the brain. Accumulated experimental and clinical data indicate the safety and potential efficacy of tPBM in some central nervous system diseases.This article briefly reviews the general concepts of tPBM, the results of experimental and clinical studies on the efficacy of tPBM in Alzheimer's disease, Parkinson's disease, and brain stroke. The possible mechanisms of the tPBM therapeutic effect and the need to choose optimal exposure parameters are discussed. Although the evidence base regarding the efficacy of tPBM in neurodegenerative and vascular brain diseases is still insufficient, analysis of the published data justifies considering tPBM as a promising method of adjuvant therapy for some central nervous system diseases.
Collapse
Affiliation(s)
- A N Belova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Yu A Israelyan
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - V O Sushin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M A Shabanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A M Rezenova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
47
|
Wang X, Zhang Z, Zhu Z, Liang Z, Zuo X, Ju C, Song Z, Li X, Hu X, Wang Z. Photobiomodulation Promotes Repair Following Spinal Cord Injury by Regulating the Transformation of A1/A2 Reactive Astrocytes. Front Neurosci 2021; 15:768262. [PMID: 34795557 PMCID: PMC8593167 DOI: 10.3389/fnins.2021.768262] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes. Male rats subjected to clip-compression SCI were treated with PBM for two consecutive weeks, and the results showed that recovery of motor function was improved, the lesion cavity size was reduced, and the number of neurons retained was increased. We determined the time course of A1/A2 astrocyte activation after SCI by RNA sequencing (RNA-Seq) and verified that PBM inhibited A1 astrocyte activation and promoted A2 astrocyte activation at 7 days postinjury (dpi) and 14 dpi. Subsequently, potential signaling pathways related to A1/A2 astrocyte activation were identified by GO function analysis and KEGG pathway analysis and then studied in animal experiments and preliminarily analyzed in cultured astrocytes. Next, we observed that the expression of basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β) was upregulated by PBM and that both factors contributed to the transformation of A1/A2 astrocytes in a dose-dependent manner. Finally, we found that PBM reduced the neurotoxicity of A1 astrocytes to dorsal root ganglion (DRG) neurons. In conclusion, PBM can promote better recovery after SCI, which may be related to the transformation of A1/A2 reactive astrocytes.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Haroon J, Mahdavi K, Zielinski MA, Habelhah B, Chan L, Bystritsky A, Kuhn T, Becerra S, Jordan S. A case of COVID-encephalopathy imaged with fMRI and treated with near infrared light. Brain Stimul 2021; 14:1444-1446. [PMID: 34560318 PMCID: PMC8453785 DOI: 10.1016/j.brs.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jonathan Haroon
- Neurological Associates - The Interventional Group, Los Angeles, California, USA.
| | - Kennedy Mahdavi
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Margaret A Zielinski
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Barshen Habelhah
- Neurological Associates - The Interventional Group, Los Angeles, California, USA
| | - Lider Chan
- Orthopedic Physical Therapy Associates, Los Angeles, California, USA
| | - Alexander Bystritsky
- University of California Los Angeles, Department of Psychiatry and Biobehavioral Sciences, USA
| | - Taylor Kuhn
- University of California Los Angeles, Department of Psychiatry and Biobehavioral Sciences, USA
| | | | - Sheldon Jordan
- Neurological Associates - The Interventional Group, Los Angeles, California, USA; Synaptec Network, USA; University of California Los Angeles, Department of Neurology, Los Angeles, California, USA
| |
Collapse
|
49
|
Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci Rep 2021; 11:18917. [PMID: 34556692 PMCID: PMC8460746 DOI: 10.1038/s41598-021-97987-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
Our recent study demonstrated that prefrontal transcranial photobiomodulation (tPBM) with 1064-nm laser enables significant changes in EEG rhythms, but these changes might result from the laser-induced heat rather than tPBM. This study hypothesized that tPBM-induced and heat-induced alterations in EEG power topography were significantly distinct. We performed two sets of measurements from two separate groups of healthy humans under tPBM (n = 46) and thermal stimulation (thermo_stim; n = 11) conditions. Each group participated in the study twice under true and respective sham stimulation with concurrent recordings of 64-channel EEG before, during, and after 8-min tPBM at 1064 nm or thermo_stim with temperature of 33-41 °C, respectively. After data preprocessing, EEG power spectral densities (PSD) per channel per subject were quantified and normalized by respective baseline PSD to remove the power-law effect. At the group level for each group, percent changes of EEG powers per channel were statistically compared between (1) tPBM vs light-stimulation sham, (2) thermo_stim vs heat-stimulation sham, and (3) tPBM vs thermo_stim after sham exclusion at five frequency bands using the non-parametric permutation tests. By performing the false discovery rate correction for multi-channel comparisons, we showed by EEG power change topographies that (1) tPBM significantly increased EEG alpha and beta powers, (2) the thermal stimulation created opposite effects on EEG power topographic patterns, and (3) tPBM and thermal stimulations induced significantly different topographies of changes in EEG alpha and beta power. Overall, this study provided evidence to support our hypothesis, showing that the laser-induced heat on the human forehead is not a mechanistic source causing increases in EEG power during and after tPBM.
Collapse
|
50
|
Basnet S, Magee CL. Technological Improvement Rates and Evolution of Energy-Based Therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:714140. [PMID: 35047947 PMCID: PMC8757806 DOI: 10.3389/fmedt.2021.714140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
This paper examines the field of energy-based medical therapies based on the analysis of patents. We define the field as the use of external stimuli to achieve biomedical modifications to treat disease and to increase health. Based upon distinct sets of patents, the field is subdivided into sub-domains for each energy category used to achieve the stimulation: electrical, magnetic, microwave, ultrasound, and optical. Previously developed techniques are used to retrieve the relevant patents for each of the stimulation modes and to determine main paths along the trajectory followed by each sub-domain. The patent sets are analyzed to determine key assignees, number of patents, and dates of emergence of the sub-domains. The sub-domains are found to be largely independent as to patent assignees. Electrical and magnetic stimulation patents emerged earliest in the 1970s and microwave most recently around 1990. The annual rate of improvement of all sub-domains (12-85%) is found to be significantly higher than one we find for an aggregate pharmaceutical domain (5%). Overall, the results suggest an increasingly important role for energy-based therapies in the future of medicine.
Collapse
Affiliation(s)
- Subarna Basnet
- SUTD-MIT International Design Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christopher L. Magee
- SUTD-MIT International Design Center, Massachusetts Institute of Technology, Cambridge, MA, United States
- Massachusetts Institute of Technology (MIT) Institute for Data, Systems and Society (IDSS), Cambridge, MA, United States
| |
Collapse
|