1
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
2
|
Xie Z, Guo Z, Lei J, Yu J. Scutellarin synergistically enhances cisplatin effect against ovarian cancer cells through enhancing the ability of cisplatin binding to DNA. Eur J Pharmacol 2019; 844:9-16. [DOI: 10.1016/j.ejphar.2018.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 01/20/2023]
|
3
|
Androutsopoulos VP, Fragiadaki I, Spandidos DA, Tosca A. The resveratrol analogue, 3,4,5,4'‑trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. Int J Oncol 2016; 49:1305-14. [PMID: 27498704 DOI: 10.3892/ijo.2016.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a natural dietary product that has demonstrated multifaceted anticancer activity. Several analogues of resveratrol have been synthesized in an effort to enhance the pharmacological potency and improve the pharmacokinetic properties of the compound. 3,4,5,4'‑trans‑tetramethoxystilbene (3,4,5,4'‑TMS) is a methoxylated analogue of resveratrol that has demonstrated anti-proliferative activity in vitro (in cancer cell lines) and in vivo (in xenograft models). In the present study, the anticancer effects of 3,4,5,4'‑TMS in A375 human melanoma cells were examined. 3,4,5,4'‑TMS markedly inhibited the proliferation of A375 cells (IC50=0.7 µM), via a mechanism involving mitotic arrest at the prometaphase stage of cell division. This effect was accompanied by the upregulation of the expression of the mitogen activated protein kinases, JNK and p38, and the concomitant activation of p38, that was verified by the nuclear translocation of the phoshorylated form of the protein. The pharmacological inhibition of p38 by SB203580 (4 µM) attenuated the effects of 3,4,5,4'‑TMS, as demonstrated by decreased cell cycle progression at the mitotic phase. Furthermore, 3,4,5,4'‑TMS increased the total levels of Aurora A, while it inhibited the localization of the protein to the spindle poles. Finally, 3,4,5,4'‑TMS exhibited anti-metastatic activity, inhibiting A375 cell migration and the attachment of the cells to a collagen type IV-coated surface. Collectively, the data suggest that 3,4,5,4'‑TMS is an effective chemotherapeutic drug for the treatment of human melanoma and that it exerts its effects through multiple anticancer modes of action.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Irene Fragiadaki
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Androniki Tosca
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| |
Collapse
|
4
|
Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J Med Chem 2016; 59:8685-8711. [DOI: 10.1021/acs.jmedchem.6b00463] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Eva-María Priego
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Oskía Bueno
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - María-Dolores Canela
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sandra Liekens
- Rega
Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
5
|
Bhattacharya S, Das A, Datta S, Ganguli A, Chakrabarti G. Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: potential use of colchicine in combination with autophagy inhibitor in cancer therapy. Tumour Biol 2016; 37:10653-64. [PMID: 26867767 DOI: 10.1007/s13277-016-4972-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
Colchicine is a well-known and potent microtubule targeting agent, but the therapeutic value of colchicine against cancer is limited by its toxicity against normal cells. But, there is no report of its cytotoxic potential against lung cancer cell, at clinically permissible or lower concentrations, minimally toxic to non-cancerous cells. Hence, in the present study, we investigated the possible mechanism by which the efficacy of colchicine against lung cancer cells at less toxic dose could be enhanced. Colchicine at clinically admissible concentration of 2.5 nM had no cytotoxic effect and caused no G2/M arrest in A549 cells. However, at this concentration, colchicine strongly hindered the reformation of cold depolymerised interphase and spindle microtubule. Colchicine induced senescence and reactive oxygen species mediated autophagy in A549 cells at this concentration. Autophagy inhibitor 3-methyladenine (3-MA) sensitised the cytotoxicity of colchicine in A549 cells by switching senescence to apoptotic death, and this combination had reduced cytotoxicity to normal lung fibroblast cells (WI38). Together, these findings indicated the possible use of colchicine at clinically relevant dose along with autophagy inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Surela Bhattacharya
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Amlan Das
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Satabdi Datta
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Arnab Ganguli
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India.
| |
Collapse
|
6
|
Kundu S, Kim TH, Yoon JH, Shin HS, Lee J, Jung JH, Kim HS. Viriditoxin regulates apoptosis and autophagy via mitotic catastrophe and microtubule formation in human prostate cancer cells. Int J Oncol 2014; 45:2331-2340. [PMID: 25231051 DOI: 10.3892/ijo.2014.2659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 11/05/2022] Open
Abstract
Microtubule targeting chemicals are considered excellent antitumor drugs through their binding to tubulin, which affects the instability of microtubules resulting in arrest of cancer cells. The present study was designed to investigate the antitumor effects of viriditoxin (VDT) against human prostate cancer cells. VDT, isolated from Paecilomyces variotii fungus, which was derived from the jellyfish Nemopilema nomurai, offers a new approach for controlling resistant bacterial infections by blocking bacterial cell division proteins. VDT produced dose-dependent cytotoxicity against human prostate cancer cells. Treatment with VDT promoted both apoptosis and autophagy in LNCaP cells. Annexin V/FITC staining indicated that apoptosis occurred in VDT-treated LNCaP cells. DAPI staining revealed morphological changes in the cell nuclei indicative of mitotic catastrophe in LNCaP cells. VDT caused cell growth inhibition via G2/M phase arrest. Moreover, VDT also increased autophagic cell death in LNCaP cells by induction of several autophagy-related proteins such as LC3 II, Atg5, Atg7 and beclin-1 protein, which are essential for autophagy induction. These results were also confirmed by acridine orange staining. This study indicates that VDT could potentially be effective against prostate cancer by promoting multiple modes of growth arrest and cell death coupled with apoptosis and autophagy.
Collapse
Affiliation(s)
- Soma Kundu
- Laboratory of Marine Natural Product, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Tae Hyung Kim
- Laboratory of Molecular Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jung Hyun Yoon
- Laboratory of Marine Natural Product, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Jaewon Lee
- Laboratory of Marine Natural Product, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Jee H Jung
- Laboratory of Marine Natural Product, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Hyung Sik Kim
- Laboratory of Molecular Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
7
|
Liu L, Mason RP, Gimi B. Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Cancer Lett 2014; 356:462-9. [PMID: 25305449 DOI: 10.1016/j.canlet.2014.09.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023]
Abstract
Combretastatin A-4 (CA4) is a natural product isolated from Combretum caffrum that inhibits tubulin polymerization by binding to the colchicine-binding site. A corresponding water soluble pro-drug (referred to as CA4P), has undergone extensive clinical trials and has been evaluated in pre-clinical studies using multiple modalities. We previously reported a novel assay based on dynamic bioluminescent imaging to assess tumor vascular disruption and now present its application to assessing multiple tumors simultaneously. The current study evaluated the vascular-disrupting activity of CA4P on subcutaneous 9L rat brain tumor xenografts in mice using dynamic bioluminescence imaging. A single dose of CA4P (120 mg/kg, intraperitoneally) induced rapid, temporary tumor vascular shutdown revealed by a rapid and reproducible decrease of light emission from luciferase-expressing 9L tumors following administration of luciferin as a substrate. A time-dependent reduction of tumor perfusion after CA4P treatment was confirmed by immunohistological assessment of the perfusion marker Hoechst 33342 and the tumor vasculature marker CD31. The vasculature showed distinct recovery within 24 h post therapy. Multiple tumors behaved similarly, although a size dependent vascular inhibition was observed. In conclusion, CA4P caused rapid, temporary tumor vascular shutdown and led to reduction of tumor perfusion in rat brain tumor xenografts and the multiple tumor approach should lead to more efficient studies requiring fewer animals and greater consistency.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Barjor Gimi
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|