1
|
Morales P, Scharf MM, Bermudez M, Egyed A, Franco R, Hansen OK, Jagerovic N, Jakubík J, Keserű GM, Kiss DJ, Kozielewicz P, Larsen O, Majellaro M, Mallo-Abreu A, Navarro G, Prieto-Díaz R, Rosenkilde MM, Sotelo E, Stark H, Werner T, Wingler LM. Progress on the development of Class A GPCR-biased ligands. Br J Pharmacol 2024. [PMID: 39261899 DOI: 10.1111/bph.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 09/13/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcel Bermudez
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Attila Egyed
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Olivia K Hansen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - György M Keserű
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Mallo-Abreu
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Tobias Werner
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Schrammel JC, König M, Frommer M, Andersen KS, Kirsten M, Seifert R, Neumann D, Schirmer B. Histamine H 1- and H 4-receptor expression in human colon-derived cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3683-3693. [PMID: 37300703 PMCID: PMC10643376 DOI: 10.1007/s00210-023-02565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
In previous studies, we demonstrated the involvement of H4R in inflammatory bowel disease (IBD) and IBD-associated colon cancer in mice and could ascribe H4R-mediated histamine function to colon epithelial cells. The transferability of obtained data to humans is however lacking. Functional expression of H4R on colon epithelial cells is a prerequisite to pursue the hypothesis of involvement of H4R in carcinogenesis. Thus, we here compared the expression of histamine receptor subtypes in a series of cell lines. Out of these, three colon-derived cell lines displaying different combinations of H1R and H4R expression were submitted to functional analyses. Human hematopoietic HMC-1, HL-60, and U937, lung-derived A549 and Calu-3, and colorectal LoVo, SW 480, Caco-2, HT-29, and HCT116 cells were included in the study. mRNA expression was quantified by RT-qPCR. For functional analyses, Caco-2, HT-29, and HCT116 cells were treated by incubation with 1 - 10 µM histamine in the presence or absence of selective histamine receptor antagonists. Calcium mobilization, cAMP accumulation, and cell proliferation were measured by fluorimetry, mass spectrometry, and real-time bioimpedance measurements, respectively. Histamine receptor expression was heterogeneous in the cell lines tested. In most cell lines, we detected H1R mRNA while H4R mRNAs were found only occasionally. The colon-derived epithelial cell lines LoVo, SW480, and HT-29 expressed H1R mRNA exclusively, while in HCT116 cells H1R and H4R mRNAs and in CaCo-2 H2R mRNA were detectable. Subsequent functional analyses in HT29, Caco-2, and HCT116 cells, however, indicated that only HT-29 responded to histamine stimulation, by means of H1R. For a detailed analysis of histamine receptor function, esp. that of H1R and H4R, in human colon-derived cell lines, the cell lines tested here are not fully convenient unless genetically modified.
Collapse
Affiliation(s)
| | - Martin König
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Miriam Frommer
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | | | - Marla Kirsten
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, 30623, Hannover, Germany.
| |
Collapse
|
3
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
4
|
Histamine in the Crosstalk Between Innate Immune Cells and Neurons: Relevance for Brain Homeostasis and Disease. Curr Top Behav Neurosci 2021; 59:261-288. [PMID: 34432259 DOI: 10.1007/7854_2021_235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histamine is a biogenic amine playing a central role in allergy and peripheral inflammatory reactions and acts as a neurotransmitter and neuromodulator in the brain. In the adult, histamine is produced mainly by mast cells and hypothalamic neurons, which project their axons throughout the brain. Thus, histamine exerts a range of functions, including wakefulness control, learning and memory, neurogenesis, and regulation of glial activity. Histamine is also known to modulate innate immune responses induced by brain-resident microglia cells and peripheral circulating monocytes, and monocyte-derived cells (macrophages and dendritic cells). In physiological conditions, histamine per se causes mainly a pro-inflammatory phenotype while counteracting lipopolysaccharide-induced inflammation both in microglia, monocytes, and monocyte-derived cells. In turn, the activation of the innate immune system can profoundly affect neuronal survival and function, which plays a critical role in the onset and development of brain disorders. Therefore, the dual role of histamine/antihistamines in microglia and monocytes/macrophages is relevant for identifying novel putative therapeutic strategies for brain diseases. This review focuses on the effects of histamine in innate immune responses and the impact on neuronal survival, function, and differentiation/maturation, both in physiological and acute (ischemic stroke) and chronic neurodegenerative conditions (Parkinson's disease).
Collapse
|
5
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
6
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
Affiliation(s)
- Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia.
| | - Alexander Fisher
- The Canberra Hospital, ACT Health, Canberra, Australia
- Australian National University Medical School, Canberra, Australia
| |
Collapse
|
7
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
8
|
Algarni AS, Hargreaves AJ, Dickenson JM. Role of transglutaminase 2 in PAC 1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells. Biochem Pharmacol 2017; 128:55-73. [PMID: 28065858 DOI: 10.1016/j.bcp.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
The PAC1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca2+. Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC1 receptor.
Collapse
Affiliation(s)
- Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
9
|
Monczor F, Copsel S, Fernandez N, Davio C, Shayo C. Histamine H 2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia. Handb Exp Pharmacol 2017; 241:141-160. [PMID: 27316911 DOI: 10.1007/164_2016_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells arising in the bone marrow, most often of those cells that would turn into white blood cells (except lymphocytes). Chemotherapy is the treatment of choice for AML but one of the major complications is that current drugs are highly toxic and poorly tolerated. In general, treatment for AML consists of induction chemotherapy and post-remission therapy. If no further post-remission is given, almost all patients will eventually relapse. Histamine, acting at histamine type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the production and release of oxygen-free radicals, thereby protecting NK and cytotoxic T cells. This protection allows immune-stimulating agents, such as interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the killing of tumor cells. Based on this mechanism, post-remission therapy with histamine and IL-2 was found to significantly prevent relapse of AML. Alternatively, another potentially less toxic approach to treat AML employs drugs to induce differentiation of malignant cells. It is based on the assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment results in tumor reprogramming and the induction of terminal differentiation. There are promissory results showing that an elevated and sustained signaling through H2 receptors is able to differentiate leukemia-derived cell lines, opening the door for the use of H2 agonists for specific differentiation therapies. In both situations, histamine acting through H2 receptors constitutes an eligible treatment to induce leukemic cell differentiation, improving combined therapies.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Junín 956 PP, (1113), Buenos Aires, Argentina.
| | - Sabrina Copsel
- Microbiology and Immunology Department, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Junín 956 PP, (1113), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, ININFA, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Junín 956 PP, (1113), Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Galindo-Villegas J, Garcia-Garcia E, Mulero V. Role of histamine in the regulation of intestinal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:178-186. [PMID: 26872545 DOI: 10.1016/j.dci.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In mammals, during the acute inflammatory response, the complex interrelationship and cross-talk among histamine and the immune system has been fairly well characterized. There is a substantial body of information on its structure, metabolism, receptors, signal transduction, physiologic and pathologic effects. However, for early vertebrates, there is little such knowledge. In the case of teleost fish, this lack of knowledge has been due to the widely held belief that histamine is not present in this phylogenetic group. However, it has been recently demonstrated, that granules of mast cells in perciforms contain biologically active histamine. More importantly, the inflammatory response was clearly demonstrated to be regulated by the direct action of histamine on professional phagocytes. Nevertheless, the molecular basis and exact role of this biogenic amine in perciforms is still a matter of speculation. Therefore, this review intends to summarize recent experimental evidence regarding fish mast cells and correlate the same with their mammalian counterparts to establish the possible role of histamine in the fish intestinal inflammatory response.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
11
|
Capelo R, Lehmann C, Ahmad K, Snodgrass R, Diehl O, Ringleb J, Flamand N, Weigert A, Stark H, Steinhilber D, Kahnt AS. Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochem Pharmacol 2016; 103:74-84. [PMID: 26774453 DOI: 10.1016/j.bcp.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/06/2016] [Indexed: 01/17/2023]
Abstract
The human histamine H4 receptor (H4R) is a Gαi/o-coupled receptor which is mainly expressed on hematopoietic cells. Accordingly, the receptor is implicated in the pathology of various diseases such as autoimmune disorders, bronchial asthma and pruritus. Due to complicated receptor pharmacology, the lack of a reliable antibody and limited availability of primary cells expressing the receptor the physiology of this receptor is still poorly understood. Therefore, we aimed to assess absolute receptor mRNA expression and functionality (intracellular Ca(2+) release) in various human myeloid cell types such as granulocytes, monocytes, macrophages and dendritic cells (DCs). This was put into context with the expression of the H1R and H2R. In addition, the influence of various inflammatory stimuli on H4R expression was investigated in macrophages and monocyte-derived DCs. We found that classically activated macrophages treated with pro-inflammatory stimuli down-regulated histamine receptor mRNA expression as did LPS and zymosan A matured monocyte-derived DCs. In contrast, alternatively activated macrophages (IL-4 or IL-13) upregulated H2R and H4R expression compared to controls. Consistent with existing literature, we found eosinophils to be the major source of the H4R. Since availability of primary eosinophils is limited, we developed a cell model based on the differentiated eosinophilic cell line EOL-1, in which H4R pharmacology and physiology may be studied.
Collapse
Affiliation(s)
- Ricardo Capelo
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Christoph Lehmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Khalil Ahmad
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Ryan Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Olaf Diehl
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Nicolas Flamand
- Université Laval, Centre de Recherche de l'IUCPQ, 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada.
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt/Main, Germany.
| | - Holger Stark
- Institute of Pharmaceutical Chemistry, Heinrich-Heine University, Universitaetsstr. 1, D-40225 Düsseldorf, Germany.
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany.
| |
Collapse
|
12
|
Werner K, Neumann D, Seifert R. High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:87-101. [PMID: 26475619 DOI: 10.1007/s00210-015-1179-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Histamine (HA) is approved for the treatment of acute myeloid leukemia (AML). Its antileukemic activity is related to histamine H2-receptor (H2R)-mediated inhibition of reactive oxygen species (ROS) production in myeloid cells facilitating survival of antineoplastic lymphocytes. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which plays a crucial role in cell survival and proliferation, is constitutively activated in leukemic cells of most AML patients resulting in poor survival prognosis. In a proof-of-principle experiment using a human phosphorylated mitogen-activated protein kinase (MAPK) array, we found high phosphorylation levels of Akt2 in U937 promonocytes that was abrogated by HA or selective H2R agonists. The H2R and the β2-adrenergic receptor (β2AR) are Gs-protein-coupled receptors. Stimulation results in adenylyl cyclase activation followed by generation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In our present study, we evaluated the pharmacological profile of the H2R and the β2AR regarding Akt2 phosphorylation at Ser474 via western blot analysis and ELISA and cAMP accumulation via HPLC-MS/MS in U937 promonocytes. H2R and β2AR agonists concentration-dependently decreased Akt2 phosphorylation at Ser474. Deviations of potencies and efficacies of agonists in Akt2 phosphorylation and cAMP accumulation assays indicated participation of cAMP-independent signaling in GPCR-induced reduction of Akt2 phosphorylation. Accordingly, our study supports the concept of functional selectivity of the H2R and the β2AR in U937 promonocytes. In summary, we extended the antileukemic mechanism of HA via H2R and revealed the potential of β2AR agonists, which are already approved in the treatment of bronchial asthma and chronic obstructive pulmonary disease, as antileukemic drugs.
Collapse
|
13
|
Werner K, Kälble S, Wolter S, Schneider EH, Buschauer A, Neumann D, Seifert R. Flow cytometric analysis with a fluorescently labeled formyl peptide receptor ligand as a new method to study the pharmacological profile of the histamine H2 receptor. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1039-52. [PMID: 26021872 DOI: 10.1007/s00210-015-1133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/18/2015] [Indexed: 01/14/2023]
Abstract
The histamine H2 receptor (H2R) is a Gs protein-coupled receptor. Its activation leads to increases in the second messenger adenosine-3',5'-cyclic monophosphate (cAMP). Presently, several systems are established to characterize the pharmacological profile of the H2R, mostly requiring radioactive material, animal models, or human blood cells. This prompted us to establish a flow cytometric analysis with a fluorescently labeled formyl peptide receptor (FPR) ligand in order to investigate the H2R functionally and pharmacologically. First, we stimulated U937 promonocytes, which mature in a cAMP-dependent fashion upon H2R activation, with histamine (HA) or selective H2R agonists and measured increases in cAMP concentrations by mass spectrometry. Next, indicative for the maturation of U937 promonocytes, we assessed the FPR expression upon incubation with HA or H2R agonists. FPR expression was measured either indirectly by formyl peptide-induced changes in intracellular calcium concentrations ([Ca(2+)]i) or directly with the fluorescein-labeled FPR ligand fNleLFNleYK-Fl. HA and H2R agonists concentration-dependently induced FPR expression, and potencies and efficacies of fMLP-induced increases in [Ca(2+)]i and FPR density correlated linearly. Accordingly, flow cytometric analysis of FPR expression constitutes a simple, inexpensive, sensitive, and reliable method to characterize the H2R pharmacologically. Furthermore, we evaluated FPR expression at the mRNA level. Generally, quantitative real-time polymerase chain reaction confirmed functional data. Additionally, our study supports the concept of functional selectivity of the H2R, since we observed dissociations in the efficacies of HA and H2R agonists in cAMP accumulation and FPR expression.
Collapse
Affiliation(s)
- Kristin Werner
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Dimeric carbamoylguanidine-type histamine H2 receptor ligands: A new class of potent and selective agonists. Bioorg Med Chem 2015; 23:3957-69. [PMID: 25639885 DOI: 10.1016/j.bmc.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 11/23/2022]
Abstract
The bioisosteric replacement of the acylguanidine moieties in dimeric histamine H2 receptor (H2R) agonists by carbamoylguanidine groups resulted in compounds with retained potencies and intrinsic activities, but considerably improved stability against hydrolytic cleavage. These compounds achieved up to 2500 times the potency of histamine when studied in [(35)S]GTPγS assays on recombinant human and guinea pig H2R. Unlike 3-(imidazol-4-yl)propyl substituted carbamoylguanidines, the corresponding 2-amino-4-methylthiazoles revealed selectivity over histamine receptor subtypes H1R, H3R and H4R in radioligand competition binding studies. H2R binding studies with three fluorescent compounds and one tritium-labeled ligand, synthesized from a chain-branched precursor, failed due to pronounced cellular accumulation and high non-specific binding. However, the dimeric H2R agonists proved to be useful pharmacological tools for functional studies on native cells, as demonstrated for selected compounds by cAMP accumulation and inhibition of fMLP-stimulated generation of reactive oxygen species in human monocytes.
Collapse
|
15
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
16
|
Werner K, Neumann D, Buschauer A, Seifert R. No evidence for histamine H4 receptor in human monocytes. J Pharmacol Exp Ther 2014; 351:519-26. [PMID: 25273276 DOI: 10.1124/jpet.114.218107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The histamine H4 receptor (H4R) is a classic pertussis toxin-sensitive Gi protein-coupled receptor that mediates increases in intracellular calcium concentration ([Ca(2+)]i). The presence of H4R in human eosinophils has been rigorously documented by several independent groups. It has also been suggested that H4R is expressed in human monocytes, but this suggestion hinges in part on H4R antibodies with questionable specificity. This situation prompted us to reinvestigate H4R expression in human monocytes. As positive control, we studied human embryonic kidney 293T cells stably expressing the human H4R (hH4R). In these cells, histamine (HA) and the H4R agonist UR-PI376 (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine) induced pertussis toxin-sensitive [Ca(2+)]i increases. However, in quantitative real-time polymerase chain reaction studies we failed to detect hH4R mRNA in human monocytes and U937 promonocytes. In human monocytes, ATP and N-formyl-l-methionyl-l-leucyl-l-phenylalanine increased [Ca(2+)]i, but HA, UR-PI376, and 5-methylhistamine (a dual H4R/H2 receptor agonist) did not. In U937 promonocytes and differentiated U937 cells, HA increased [Ca(2+)]i, but this increase was mediated via HA H1 receptor. In conclusion, there is no evidence for the presence of H4R in human monocytes.
Collapse
Affiliation(s)
- Kristin Werner
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Armin Buschauer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| |
Collapse
|