1
|
Procházková J, Kahounová Z, Vondráček J, Souček K. Aryl hydrocarbon receptor as a drug target in advanced prostate cancer therapy - obstacles and perspectives. Transcription 2025; 16:47-66. [PMID: 38547312 PMCID: PMC11970783 DOI: 10.1080/21541264.2024.2334106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2025] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor that is primarily known as an intracellular sensor of environmental pollution. After five decades, the list of synthetic and toxic chemicals that activate AhR signaling has been extended to include a number of endogenous compounds produced by various types of cells via their metabolic activity. AhR signaling is active from the very beginning of embryonal development throughout the life cycle and participates in numerous biological processes such as control of cell proliferation and differentiation, metabolism of aromatic compounds of endogenous and exogenous origin, tissue regeneration and stratification, immune system development and polarization, control of stemness potential, and homeostasis maintenance. AhR signaling can be affected by various pharmaceuticals that may help modulate abnormal AhR signaling and drive pathological states. Given their role in immune system development and regulation, AhR antagonistic ligands are attractive candidates for immunotherapy of disease states such as advanced prostate cancer, where an aberrant immune microenvironment contributes to cancer progression and needs to be reeducated. Advanced stages of prostate cancer are therapeutically challenging and characterized by decreased overall survival (OS) due to the metastatic burden. Therefore, this review addresses the role of AhR signaling in the development and progression of prostate cancer and discusses the potential of AhR as a drug target for the treatment of advanced prostate cancer upon entering the phase of drug resistance and failure of first-line androgen deprivation therapy.Abbreviation: ADC: antibody-drug conjugate; ADT: androgen deprivation therapy; AhR: aryl hydrocarbon receptor; AR: androgen receptor; ARE: androgen response element; ARPI: androgen receptor pathway inhibitor; mCRPC: metastatic castration-resistant prostate cancer; DHT: 5a-dihydrotestosterone; FICZ: 6-formylindolo[3,2-b]carbazole; 3-MC: 3-methylcholanthrene; 6-MCDF: 6-methyl-1,3,8-trichlorodibenzofuran; MDSCs: myeloid-derived suppressor cells; PAHs: polycyclic aromatic hydrocarbons; PCa: prostate cancer; TAMs: tumor-associated macrophages; TF: transcription factor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TME: tumor microenvironment; TRAMP: transgenic adenocarcinoma of the mouse prostate; TROP2: tumor associated calcium signal transducer 2.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Xu Q, Xie M, Yang X, Liu X, Ye L, Chen K, Chan EWC, Chen S. Conjugative transmission of virulence plasmid in Klebsiella pneumoniae mediated by a novel IncN-like plasmid. Microbiol Res 2024; 289:127896. [PMID: 39260133 DOI: 10.1016/j.micres.2024.127896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Klebsiella pneumoniae (Kp) is increasingly recognized as a reservoir for a range of antibiotic resistance genes and a pathogen that frequently causes severe infections in both hospital and community settings. In this study, we have identified a novel mechanism of conjugative transfer of a non-conjugative virulence plasmid through the formation of a fusion plasmid between the virulence plasmid and a novel 59,162 bp IncN- plasmid. This plasmid was found to be a multidrug-resistance (MDR) plasmid and carried a T4SS cluster, which greatly facilitated the efficient horizontal transfer of the fusion plasmid between Kp strains. The fused virulence plasmid conferred the resistance of serum killing and macrophage phagocytosis to the transconjugants. Importantly, this plasmid was shown to be essential for Kp virulence in a mouse model. Mechanistic analysis revealed that the virulence factors encoded by this virulence plasmid contributed to resistance to in vivo clearance and induced a high level of proinflammatory cytokine IL-1β, which acts as an inducer for more neutrophil recruitment. The transmission of the fusion plasmid in Kp has the potential to convert it into both MDR and hypervirulent Kp, accelerating its evolution, and posing a serious threat to human health. The findings of this study provide new insights into the rapid evolution of MDR and hypervirulent Kp in recent years.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Miaomiao Xie
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuemei Yang
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaoxuan Liu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
3
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
4
|
Tian X, Zheng S, Wang J, Yu M, Lin Z, Qin M, Wu Y, Chen S, Zhong S. Cardiac disorder-related adverse events for aryl hydrocarbon receptor agonists: a safety review. Expert Opin Drug Saf 2022; 21:1505-1510. [PMID: 35582860 DOI: 10.1080/14740338.2022.2078301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although cardiac disorder-related adverse events (AEs) have been reported in patients treated with aryl hydrocarbon receptor (AHR) agonists, their safety profiles remain unknown. Here, we identified significant cardiac disorders associated with AHR agonists and further evaluated their relevance. RESEARCH DESIGN AND METHODS Database queries were performed using OpenVigil 2.1 and AEs voluntarily submitted to Food and Drug Administration Adverse Event Reporting System (FAERS) between 2004 and 2020 were included. This study based on the Medical Dictionary for Regulatory Activities and the standardized MedDRA Queries to define the preferred terms, and we used reporting odd ratio to detect signals. RESULTS In the FAERS database, 14,078 cardiac disorder-related AEs were identified in patients receiving AHR agonists. Among all AHR agonists, the number of cardiac disorder-related PTs with positive signals for AHR agonists was 93. Peripheral swelling (n = 1572) and atrial fibrillation (n = 1277) were the most reported cardiac disorder-related AEs among AHR agonists in disproportionately reported PTs. Moreover, several AHR agonists were highly associated with tachyarrhythmia. CONCLUSIONS By mining the FAERS database, we provided more information on the association between AHR agonist use and cardiac disorder-related AEs.
Collapse
Affiliation(s)
- Xiaoxue Tian
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shufen Zheng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yu
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuoheng Lin
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Qin
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shilong Zhong
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
6
|
Basili D, Reynolds J, Houghton J, Malcomber S, Chambers B, Liddell M, Muller I, White A, Shah I, Everett LJ, Middleton A, Bender A. Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Chem Res Toxicol 2022; 35:670-683. [PMID: 35333521 PMCID: PMC9019810 DOI: 10.1021/acs.chemrestox.1c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Estimation of points of departure (PoDs) from high-throughput transcriptomic data (HTTr) represents a key step in the development of next-generation risk assessment (NGRA). Current approaches mainly rely on single key gene targets, which are constrained by the information currently available in the knowledge base and make interpretation challenging as scientists need to interpret PoDs for thousands of genes or hundreds of pathways. In this work, we aimed to address these issues by developing a computational workflow to investigate the pathway concentration-response relationships in a way that is not fully constrained by known biology and also facilitates interpretation. We employed the Pathway-Level Information ExtractoR (PLIER) to identify latent variables (LVs) describing biological activity and then investigated in vitro LVs' concentration-response relationships using the ToxCast pipeline. We applied this methodology to a published transcriptomic concentration-response data set for 44 chemicals in MCF-7 cells and showed that our workflow can capture known biological activity and discriminate between estrogenic and antiestrogenic compounds as well as activity not aligning with the existing knowledge base, which may be relevant in a risk assessment scenario. Moreover, we were able to identify the known estrogen activity in compounds that are not well-established ER agonists/antagonists supporting the use of the workflow in read-across. Next, we transferred its application to chemical compounds tested in HepG2, HepaRG, and MCF-7 cells and showed that PoD estimates are in strong agreement with those estimated using a recently developed Bayesian approach (cor = 0.89) and in weak agreement with those estimated using a well-established approach such as BMDExpress2 (cor = 0.57). These results demonstrate the effectiveness of using PLIER in a concentration-response scenario to investigate pathway activity in a way that is not fully constrained by the knowledge base and to ease the biological interpretation and support the development of an NGRA framework with the ability to improve current risk assessment strategies for chemicals using new approach methodologies.
Collapse
Affiliation(s)
- Danilo Basili
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Joe Reynolds
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Jade Houghton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Sophie Malcomber
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Bryant Chambers
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark Liddell
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Iris Muller
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andrew White
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Imran Shah
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Logan J. Everett
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Alistair Middleton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andreas Bender
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Droździk M, Oswald S, Droździk A. Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomed Pharmacother 2021; 143:112125. [PMID: 34474348 DOI: 10.1016/j.biopha.2021.112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging information suggests that pathology of the kidney may not only affect expression and function of membrane transporters in the organ, but also in the gastrointestinal tract and the liver. Transporter dysfunction may cause effects on handling of drug as well as endogenous compounds with subsequent clinical consequences. A literature search was conducted on Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and liver localized ABC transporters and SLC carriers in kidney dysfunction or uremia states. The altered function of drug transporters in the liver and intestines in kidney failure subjects may provide compensatory activity in handling endogenous compounds (e.g. uremic toxins), which is expected to affect drug pharmacokinetics and local drug actions.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Pharmacology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Agnieszka Droździk
- Department of Integrated Dentistry, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| |
Collapse
|
8
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
9
|
Montazeri-Najafabady N, Chatrabnous N, Arabnezhad MR, Azarpira N. Anti-androgenic effect of astaxanthin in LNCaP cells is mediated through the aryl hydrocarbon-androgen receptors cross talk. J Food Biochem 2021; 45:e13702. [PMID: 33694182 DOI: 10.1111/jfbc.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the anti-androgenic effects of astaxanthin (AST) on human prostatic cancer cell growth, and its impact on androgen receptor (AR) signaling using prostate cancer (PCa) cell line LNCaP. LNCaP cells were treated with AST alone and in combination with CH223191 and flutamide (Flu) in the presence and absence of testosterone. MTT assay, cellular prostate-specific antigen (PSA) and dihydrotestosterone (DHT) production, mRNA levels of CYP1A1, PSA, Kallikrein-Related Peptidase 2 (KLK2), Transmembrane Serine Protease 2 (TMPRSS2), and AR genes were measured as endpoints. The expression of CYP1A1, PSA, KLK2, TMPRSS2, and AR mRNA levels was decreased which results in reducing the production of PSA and DHT in the presence of testosterone. Our data clearly demonstrate that AST has a potential ability to suppress the human prostate LNCaP cells growth at high concentrations. AST was able to repress the testosterone-induced transcription of AR-target genes. PRACTICAL APPLICATIONS: Astaxanthin is a natural compound with the most potent antioxidant activity among other antioxidants. In the current study, ASX suppressed the LNCaP cells at high concentrations. Furthermore, AST inhibited testosterone-induced transcriptional activation of androgen-related genes. AST induced the expression of CYP1A1, which is able to metabolize the steroid hormones. It seems that AST can act as AhR exogenous ligand by induction of CYP1A1, which results in testosterone metabolism and consequent suppression of AR genes. So that, AST could prevent the growth of testosterone-dependent PCa cells, downregulate downstream genes in testosterone pathways, and enhance the metabolism of testosterone via AhR pathway. Collectively, AST could be considered as a potential candidate for the treatment of PCa.
Collapse
Affiliation(s)
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Arabnezhad MR, Montazeri-Najafabady N, Chatrabnous N, Ghafarian Bahreman A, Mohammadi-Bardbori A. Anti-androgenic effect of 6-formylindolo[3,2-b]carbazole (FICZ) in LNCaP cells is mediated by the aryl hydrocarbon-androgen receptors cross-talk. Steroids 2020; 153:108508. [PMID: 31586605 DOI: 10.1016/j.steroids.2019.108508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The factual impact of endogenously activated AHR by 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous ligand of AHR on androgen receptor (AR) was aim of this study. In this study, LNCaP cells were exposed to FICZ, CH223191 and flutamide (Flu) alone or in combination in the presence and absence of testosterone. CYP1A1 enzyme activity, cell viability, cellular prostate-specific antigen (PSA) and dihydrotestosterone (DHT) production, mRNA levels of PSA, KLK2, TMPRSS2, and AR genes were measured as endpoints. A declining in the expression of androgen- responsive target genes was seen by either Flu or FICZ in the presence of testosterone. Furthermore, the forced decrease in the expression of AR target genes resulted in 41% and 31% decline in the DHT and PSA concentrations respectively. Taken together, endogenously activated AHR plays a regulatory role on AR. Therefore, FICZ might be an effective chemical in treating prostate cancer.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghafarian Bahreman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Dantsuka A, Ichii O, Hanberg A, Elewa YHA, Otsuka-Kanazawa S, Nakamura T, Kon Y. Histopathological features of the proper gastric glands in FVB/N-background mice carrying constitutively-active aryl-hydrocarbon receptor. BMC Gastroenterol 2019; 19:102. [PMID: 31226941 PMCID: PMC6588904 DOI: 10.1186/s12876-019-1009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Background Aryl-hydrocarbon receptor (AhR) is a multiple ligand-activated transcription factor that has important roles in xenobiotic, physiological, or pathological functions. Transgenic mice systemically expressing constitutively-active AhR (CA-AhR) have been created to mimic activated AhR signaling in vivo. However, their detailed histopathological features are unclear. In the present study, we generated CA-AhR-expressing FVB/N mice (FVB-CA-AhR mice) and clarified their phenotypes in detail. Methods Male and female FVB-CA-AhR and wild-type mice were histopathologically examined from 6 to 33 weeks of age. Results Among the systemic organs, only the stomachs in FVB-CA-AhR mice showed pathological changes including cystic structures beneath the serosa; in addition, stomach weights increased with age. Histopathologically, cystic structures and alcian blue-positive metaplasia were observed in the mucosa of the proper gastric glands, and these two histometric parameters were positively correlated. Furthermore, proliferating cells shifted from the isthmus to the base of the glands, and parietal cells decreased. Age-related histopathological changes were clearer in females than in males. Importantly, in FVB-CA-AhR mice, intramucosal cysts developed as extramucosal cysts beneath the serosa, penetrating the lamina muscularis mucosae and the muscularis propria. Their incidence reached 100% in 28-week-old male mice and 33-week-old female mice. Extramucosal cysts contained alcian blue-, Griffonia simplicifolia lectin II-, or trefoil factor 2-positive cells, suggesting a stomach origin for the cysts and spasmolytic polypeptide-expressing metaplasia-like lesions. Conclusions Disease onset occurred earlier in FVB-CA-AhR mice than previously reported in C57BL/6-derived CA-AhR mice. Importantly, the histopathological features were partly similar with gastritis cystica profunda in humans and animals. Excessive activation of AhR signaling aggravated abnormalities in the gastric mucosa and were affected by both genetic- and sex-related factors. Electronic supplementary material The online version of this article (10.1186/s12876-019-1009-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai Dantsuka
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Annika Hanberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Saori Otsuka-Kanazawa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Bunkyo 2-3, Chitose, 066-0052, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
13
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
14
|
Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf 2018; 18:221-242. [DOI: 10.1111/1541-4337.12401] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
- College of Animal Science and Technology; Shihezi Univ.; Xinjiang 832003 China
- Dept. of Internal Medicine; Dept. of Biochemistry; Univ. of Texas Southwestern Medical Center; Dallas TX 75390 USA
| |
Collapse
|
15
|
Zhang Y, Yan T, Sun D, Xie C, Zheng Y, Zhang L, Yagai T, Krausz KW, Bisson WH, Yang X, Gonzalez FJ. Structure-Activity Relationships of the Main Bioactive Constituents of Euodia rutaecarpa on Aryl Hydrocarbon Receptor Activation and Associated Bile Acid Homeostasis. Drug Metab Dispos 2018; 46:1030-1040. [PMID: 29691238 PMCID: PMC6003592 DOI: 10.1124/dmd.117.080176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/19/2018] [Indexed: 12/02/2022] Open
Abstract
Rutaecarpine (RUT), evodiamine (EOD), and dehydroevodiamine (DHED) are the three main bioactive indoloquinazoline alkaloids isolated from Euodia rutaecarpa, a widely prescribed traditional Chinese medicine. Here, the structure-activity relationships of these analogs for aryl hydrocarbon receptor (AHR) activation were explored by use of Ahr-deficient (Ahr-/-) mice, primary hepatocyte cultures, luciferase reporter gene assays, in silico ligand-docking studies, and metabolomics. In vitro, both mRNA analysis of AHR target genes in mouse primary hepatocytes and luciferase reporter assays in hepatocarcinoma cell lines demonstrated that RUT, EOD, and DHED significantly activated AHR, with an efficacy order of RUT > DHED > EOD. Ligand-docking analysis predicted that the methyl substitute at the N-14 atom was a key factor affecting AHR activation. In vivo, EOD was poorly orally absorbed and failed to activate AHR, whereas RUT and DHED markedly upregulated expression of the hepatic AHR gene battery in wild-type mice, but not in Ahr-/- mice. Furthermore, RUT, EOD, and DHED were not hepatotoxic at the doses used; however, RUT and DHED disrupted bile acid homeostasis in an AHR-dependent manner. These findings revealed that the methyl group at the N-14 atom of these analogs and their pharmacokinetic behaviors were the main determinants for AHR activation, and suggest that attention should be given to monitoring bile acid metabolism in the clinical use of E. rutaecarpa.
Collapse
Affiliation(s)
- Youbo Zhang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Dongxue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Yiran Zheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Lei Zhang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - William H Bisson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Xiuwei Yang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Yo.Z., Ti.Y., D.S. C.X., To.Y., K.W.K., F.J.G.); State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China (Yo.Z., Yi.Z., L.Z., X.Y.); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (W.H.B.); and College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (D.S.)
| |
Collapse
|
16
|
Hejmej A, Bilinska B. The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 2018; 81:1-16. [PMID: 29958919 DOI: 10.1016/j.reprotox.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
In this review, we summarize recent findings on the effect of the anti-androgen flutamide on cell-cell junctions in the male reproductive system. We outline developmental aspects of flutamide action on the testis, epididymis, and prostate, and describe changes in junction protein expression and organization of junctional complexes in the adult boar following prenatal and postnatal exposure. We also discuss findings on the mechanisms by which flutamide induces alterations in cell-cell junctions in reproductive tissues of adult males, with special emphasis on cytoplasmic effects. Based on the results from in vivo and in vitro studies in the rat, we propose that flutamide affects the expression of junction proteins and junction complex structure not only by inhibiting androgen receptor activity, but equally important by modulating protein kinase-dependent signaling in testicular cells. Additionally, results from studies on prostate cancer cell lines point to a role for the cellular molecular outfit in response to flutamide.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
17
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism. Sci Rep 2017; 7:5921. [PMID: 28725001 PMCID: PMC5517430 DOI: 10.1038/s41598-017-05656-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant which elicits hepatotoxicity through activation of the aryl hydrocarbon receptor (AhR). Male C57BL/6 mice orally gavaged with TCDD (0.01–30 µg/kg) every 4 days for 28 days exhibited bile duct proliferation and pericholangitis. Mass spectrometry analysis detected a 4.6-fold increase in total hepatic bile acid levels, despite the coordinated repression of genes involved in cholesterol and primary bile acid biosynthesis including Cyp7a1. Specifically, TCDD elicited a >200-fold increase in taurolithocholic acid (TLCA), a potent G protein-coupled bile acid receptor 1 (GPBAR1) agonist associated with bile duct proliferation. Increased levels of microbial bile acid metabolism loci (bsh, baiCD) are consistent with accumulation of TLCA and other secondary bile acids. Fecal bile acids decreased 2.8-fold, suggesting enhanced intestinal reabsorption due to induction of ileal transporters (Slc10a2, Slc51a) and increases in whole gut transit time and intestinal permeability. Moreover, serum bile acids were increased 45.4-fold, consistent with blood-to-hepatocyte transporter repression (Slco1a1, Slc10a1, Slco2b1, Slco1b2, Slco1a4) and hepatocyte-to-blood transporter induction (Abcc4, Abcc3). These results suggest that systemic alterations in enterohepatic circulation, as well as host and microbiota bile acid metabolism, favor bile acid accumulation that contributes to AhR-mediated hepatotoxicity.
Collapse
|
18
|
Abstract
Cytochrome P450 1B1 (CYP1B1), a member of CYP superfamily, is expressed in liver and extrahepatic tissues carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. Surprisingly, CYP1B1 was also shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 and nuclear receptors including peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), and retinoic acid receptors (RAR) contribute to the maintenance of the homeostasis of these endogenous compounds. Many natural flavonoids and synthetic stilbenes show inhibitory activity toward CYP1B1 expression and function, notably isorhamnetin and 2,4,3',5'-tetramethoxystilbene. Accumulating evidence indicates that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis, and prevent obesity, hypertension, atherosclerosis, and cancer. Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases.
Collapse
|
19
|
Hanieh H, Mohafez O, Hairul-Islam VI, Alzahrani A, Bani Ismail M, Thirugnanasambantham K. Novel Aryl Hydrocarbon Receptor Agonist Suppresses Migration and Invasion of Breast Cancer Cells. PLoS One 2016; 11:e0167650. [PMID: 27907195 PMCID: PMC5132326 DOI: 10.1371/journal.pone.0167650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite the remarkable progress to fight against breast cancer, metastasis remains the dominant cause of treatment failure and recurrence. Therefore, control of invasiveness potential of breast cancer cells is crucial. Accumulating evidences suggest Aryl hydrocarbon receptor (Ahr), a helix-loop-helix transcription factor, as a promising target to control migration and invasion in breast cancer cells. Thus, an Ahr-based exploration was performed to identify a new Ahr agonist with inhibitory potentials on cancer cell motility. METHODS For prediction of potential interactions between Ahr and candidate molecules, bioinformatics analysis was carried out. The interaction of the selected ligand with Ahr and its effects on migration and invasion were examined in vitro using the MDA-MB-231 and T47D cell lines. The silencing RNAs were transfected into cells by electroporation. Expressions of microRNAs (miRNAs) and coding genes were quantified by real-time PCR, and the protein levels were detected by western blot. RESULTS The in silico and in vitro results identified Flavipin as a novel Ahr agonist. It induces formation of Ahr/Ahr nuclear translocator (Arnt) heterodimer to promote the expression of cytochrome P450 family 1 subfamily A member 1 (Cyp1a1). Migration and invasion of MDA-MB-231 and T47D cells were inhibited with Flavipin treatment in an Ahr-dependent fashion. Interestingly, Flavipin suppressed the pro-metastatic factor SRY-related HMG-box4 (Sox4) by inducing miR-212/132 cluster. Moreover, Flavipin inhibited growth and adhesion of both cell lines by suppressing gene expressions of B-cell lymphoma 2 (Bcl2) and integrinα4 (ITGA4). CONCLUSION Taken together, the results introduce Flavipin as a novel Ahr agonist, and provide first evidences on its inhibitory effects on cancer cell motility, suggesting Flavipin as a candidate to control cell invasiveness in breast cancer patients.
Collapse
Affiliation(s)
- Hamza Hanieh
- Biological Sciences Department, College of Science, King Faisal University, Hofuf Ahsaa, Saudi Arabia
- * E-mail:
| | - Omar Mohafez
- Biomedical Department, College of Clinical Pharmacy, Hofuf Ahsaa, Saudi Arabia
- Biochemistry Department, College of Pharmacy Al-Azhar University Assiut, Egypt
| | - Villianur Ibrahim Hairul-Islam
- Biological Sciences Department, College of Science, King Faisal University, Hofuf Ahsaa, Saudi Arabia
- Pondicherry Centre For Biological Sciences, Jawahar Nagar, Pondicherry, India
| | - Abdullah Alzahrani
- Biological Sciences Department, College of Science, King Faisal University, Hofuf Ahsaa, Saudi Arabia
| | - Mohammad Bani Ismail
- Biological Sciences Department, College of Science, King Faisal University, Hofuf Ahsaa, Saudi Arabia
| | | |
Collapse
|