1
|
Korkmaz-Icöz S, Szabó G, Gieldon A, McDonald PP, Dashkevich A, Yildirim AÖ, Korkmaz B. Protective effects of neutrophil serine protease inhibition against ischemia-reperfusion injury in lung or heart transplantation. FEBS J 2025. [PMID: 39854149 DOI: 10.1111/febs.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage. Extended preservation times for the transplanted donor organ correlate with heightened occurrences of vascular damage and graft dysfunction. Preservation with α1-antitrypsin, an endogenous inhibitor of NSPs, improves primary graft function after lung or heart transplantation. Furthermore, pre-operative pharmacological targeting of NSP activation in the recipient using chemical inhibitors suppresses neutrophilic inflammation in transplanted organs. Hence, effective control of NSPs in the graft and recipient is a promising strategy to prevent IR injury. In this review, we describe the pathological functions of NSPs in IR injury and discuss their pharmacological inhibition to prevent primary graft dysfunction in lung or heart transplantation.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
- Department of Cardiac Surgery, University Hospital Halle (Saale), Germany
| | | | | | - Alexey Dashkevich
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases (CEPR)", Tours, France
- Université de Tours, France
| |
Collapse
|
2
|
Arbiv OA, Quon BS. Disarming the cavalry: targeting neutrophils to limit collateral damage in non-CF bronchiectasis. Eur Respir J 2025; 65:2401804. [PMID: 39746771 DOI: 10.1183/13993003.01804-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Omri A Arbiv
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Clinician-Investigator Program, University of British Columbia, Vancouver, BC, Canada
| | - Bradley S Quon
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
3
|
Chen X, Lou Y, Zhou F, Shi D, Liu X, Tao F. Identification of novel indolinone derivatives as CTSC inhibitors to treat inflammatory bowel disease by modulating inflammatory factors. Eur J Med Chem 2024; 280:116914. [PMID: 39383651 DOI: 10.1016/j.ejmech.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Novel inflammatory bowel disease (IBD) therapeutic drugs, mainly biologics that neutralize pro-inflammatory factors and janus kinase inhibitors that inhibit cytokine-mediated signal transduction, face problems including low efficacy rates, limited therapeutic benefits, and infection risks. It is an important task to find proteins that broadly regulate a variety of cytokines and to develop corresponding drugs. Cathepsin C (CTSC) mediates neutrophil-related inflammatory, participates in the recruitment and activation of inflammatory cells, and regulates cytokines levels, and is considered an ideal target for IBD treatment. In this study, starting from the in-house molecule, through medicinal chemistry and target-based design, a novel CTSC inhibitor B22 with IBD therapeutic efficacy was discovered. In vitro target verification and mechanism study indicated that B22 inhibit CTSC activity by binding to S2 pocket and S1 site, further inhibiting downstream serine protease activity. In addition, B22 exhibited anti-inflammatory activity and regulated various cytokines levels. In vivo studies highlighted B22 bears acceptable toxicity and suitable pharmacokinetic properties, and displays anti-inflammatory activity in IBD model. In conclusion, B22 is a potential anti-inflammatory molecule for IBD by targeting CTSC and deserves further research.
Collapse
Affiliation(s)
- Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Feilong Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Daxing Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China.
| | - Fangbiao Tao
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
4
|
Shen X, Li N, Liu M, Han X, Wang Y, Jia J, Wu F, Chen H, Liu X. Design and synthesis of novel cathepsin C inhibitors with anti-inflammatory activity. RSC Med Chem 2024:d4md00730a. [PMID: 39635544 PMCID: PMC11612923 DOI: 10.1039/d4md00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Cathepsin C (Cat C) is a potential candidate for addressing inflammatory conditions associated with neutrophil serine proteases (NSPs). The high reactivity of electrophilic warheads and the metabolic instability of peptide structures are among the primary challenges in developing potent cathepsin C inhibitors. Compound 36, a lead compound derived from compound 1 through structure-based drug design and structure-activity relationship (SAR), exhibited strong Cat C inhibitory activity with an IC50 value of 437 nM. It also showed a substantial enhancement in overall anti-inflammatory activity, achieving an inhibitory effect on NO release at 4.1 μM. Furthermore, molecular docking was conducted to analyze the mode of action with Cat C. And cell thermal shift analysis (CETSA) revealed that this compound increases the temperature tolerance of Cat C in a concentration-dependent manner, suggesting strong binding to the target Cat C. Prolonged pharmacological inhibition activity may result in the depletion of active NSPs.
Collapse
Affiliation(s)
- Xiaobao Shen
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Nan Li
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Miao Liu
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Xuanzheng Han
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Yazhi Wang
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Jingwen Jia
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Fufang Wu
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Hongwei Chen
- Medical School, Fuyang Normal University Fuyang 236037 P. R. China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University Hefei 230601 P. R. China
| |
Collapse
|
5
|
Domain R, Seren S, Jerke U, Makridakis M, Chen KJ, Zoidakis J, Rhimi M, Zhang X, Bonvent T, Croix C, Gonzalez L, Li D, Basso J, Paget C, Viaud-Massuard MC, Lalmanach G, Shi GP, Aghdassi A, Vlahou A, McDonald PP, Couillin I, Williams R, Kettritz R, Korkmaz B. Pharmacological inhibition of cathepsin S and of NSPs-AAP-1 (a novel, alternative protease driving the activation of neutrophil serine proteases). Biochem Pharmacol 2024; 229:116114. [PMID: 39455238 DOI: 10.1016/j.bcp.2024.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 10/28/2024]
Abstract
An uncontrolled activity of neutrophil serine proteases (NSPs) contributes to inflammatory diseases. Cathepsin C (CatC) is known to activate NSPs during neutrophilic differentiation and represents a promising pharmacological target in NSP-mediated diseases. In humans, Papillon-Lefèvre syndrome (PLS) patients have mutations in theirCTSC gene, resulting in the complete absence of CatC activity. Despite this, low residual NSP activities are detected in PLS neutrophils (<10% vs healthy individuals), suggesting the involvement of CatC-independent proteolytic pathway(s) in the activation of proNSPs. This prompted us to characterize CatC-independent NSP activation pathways by blocking proCatC maturation. In this study, we show that inhibition of intracellular CatS almost completely blocked CatC maturation in human promyeloid HL-60 cells. Despite this, NSP activation was not significantly reduced, confirming the presence of a CatC-independent activation pathway involving a CatC-like protease that we termed NSPs-AAP-1. Similarly, when human CD34+ progenitor cells were treated with CatS inhibitors during neutrophilic differentiation in vitro, CatC activity was nearly abrogated but ∼30% NSP activities remained, further supporting the existence of NSPs-AAP-1. Our data indicate that NSPs-AAP-1 is a cysteine protease that is inhibited by reversible nitrile compounds designed for CatC inhibition. We further established a proof of concept for the indirect, although incomplete, inhibition of NSPs by pharmacological targeting of CatC maturation using CatS inhibitors. This emphasizes the potential of CatS as a therapeutic target for inflammatory diseases. Thus, preventing proNSP maturation using a CatS inhibitor, alone or in combination with a CatC/NSPs-AAP-1 inhibitor, represents a promising approach to efficiently control the extent of tissue injury in neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Roxane Domain
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Seda Seren
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Uwe Jerke
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Kuan-Ju Chen
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Jérôme Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Moez Rhimi
- INRAE UMR-1319, Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Tillia Bonvent
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Cécile Croix
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Dedong Li
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Jessica Basso
- Research Department, Insmed Incorporated, Bridgewater, NJ, USA
| | - Christophe Paget
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Marie-Claude Viaud-Massuard
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Gilles Lalmanach
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France
| | - Guo-Ping Shi
- Department of Medicine, Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Aghdassi
- Department of Medicine A - Gastroenterology, Nephrology, Endocrinology and Rheumatology, University Medicine Greifswald, Greifswald, Germany
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Isabelle Couillin
- CNRS UMR-7355, Experimental and Molecular Immunology and Neurogenetics, Université d'Orléans, Orleans, France
| | - Rich Williams
- The Patrick G Johnston Center for Cancer Research, Queen's University, Belfast, UK
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, Tours, France; Université de Tours, Tours, France.
| |
Collapse
|
6
|
Marie Encarnacion A, Pootheri N, Yao H, Chen Z, Lee S, Kim E, Lee TH. Novel inhibitor N-cyclopropyl-4-((4-((4-(trifluoromethyl)phenyl)sulfonyl)piperazin-1-yl)methyl)benzamide attenuates RANKL-mediated osteoclast differentiation in vitro. Bioorg Med Chem Lett 2024; 110:129884. [PMID: 38996939 DOI: 10.1016/j.bmcl.2024.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Both cyclopropyl amide and piperazine sulfonamide functional groups are known for their various biological properties used for drug development. Herein, we synthesized nine new derivatives with different substituent groups incorporating these moieties and screened them for their anti-osteoclast differentiation activity. After analyzing the structure-activity relationship (SAR), the inhibitory effect against osteoclastogenesis was determined to be dependent on the lipophilicity of the compound. Derivative 5b emerged as the most effective dose-dependent inhibitor after TRAP staining with an IC50 of 0.64 µM against RANKL-induced osteoclast cells. 5b was also able to suppress F-acting ring formation and bone resorption activity of osteoclasts in vitro. Finally, well-acknowledged gene and protein osteoclast-specific marker expression levels were decreased after 5b administration on primary murine osteoclast cells.
Collapse
Affiliation(s)
| | - Nithin Pootheri
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Hongyuan Yao
- Interdisciplinary Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, South Korea; Host-directed Antiviral Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Interdisciplinary Department of Biomedical Engineering, Chonnam National University, Gwangju 61186, South Korea; Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
7
|
Tu Z, Zhong J, Li H, Sun L, Huang Y, Yang S, Lu Y, Cai S. Characterization and function analysis of cathepsin C in Marsupenaeusjaponicus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109379. [PMID: 38242264 DOI: 10.1016/j.fsi.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.
Collapse
Affiliation(s)
- Zuhao Tu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | | | | | | | - Yucong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
| |
Collapse
|
8
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
9
|
Gao CF, Chen YJ, Nie J, Zhang FG, Cheung CW, Ma JA. Synthesis of di/trifluoromethyl cyclopropane-dicarbonitriles via [2+1] annulation of fluoro-based diazoethanes with (alkylidene)malononitriles. Chem Commun (Camb) 2023; 59:11664-11667. [PMID: 37695256 DOI: 10.1039/d3cc03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Herein, we describe a [2+1] annulation reaction of di/trifluorodiazoethane with (alkylidene)malononitriles. This protocol offers a streamlined synthesis of a wide range of stereospecific and densely functionalized difluoromethyl and trifluoromethyl cyclopropane-1,1-dicarbonitriles. Further functional group interconversions or skeletal elaborations afford structurally distinct cyclopropyl variants.
Collapse
Affiliation(s)
- Cheng-Feng Gao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Yue-Ji Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
10
|
Bourgon C, Albin AS, Ando-Grard O, Da Costa B, Domain R, Korkmaz B, Klonjkowski B, Le Poder S, Meunier N. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79:616. [PMID: 36460750 PMCID: PMC9734468 DOI: 10.1007/s00018-022-04643-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
The loss of smell (anosmia) related to SARS-CoV-2 infection is one of the most common symptoms of COVID-19. Olfaction starts in the olfactory epithelium mainly composed of olfactory sensory neurons surrounded by supporting cells called sustentacular cells. It is now clear that the loss of smell is related to the massive infection by SARS-CoV-2 of the sustentacular cells in the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamsters infected with an early circulating SARS-CoV-2 strain harboring the D614G mutation in the spike protein; we show here that rather than being related to a first wave of apoptosis as proposed in previous studies, the innate immune cells play a major role in the destruction of the olfactory epithelium. We observed that while apoptosis remains at a low level in the damaged area of the infected epithelium, the latter is invaded by Iba1+ cells, neutrophils and macrophages. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we could reduce the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease in SARS-CoV-2 infection levels in the olfactory epithelium. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus in the early phase of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Chen X, Yan Y, Du J, Shen X, He C, Pan H, Zhu J, Liu X. Non-peptidyl non-covalent cathepsin C inhibitoEEr bearing a unique thiophene-substituted pyridine: Design, structure-activity relationship and anti-inflammatory activity in vivo. Eur J Med Chem 2022; 236:114368. [DOI: 10.1016/j.ejmech.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
12
|
Jerke U, Eulenberg-Gustavus C, Rousselle A, Nicklin P, Kreideweiss S, Grundl MA, Eickholz P, Nickles K, Schreiber A, Korkmaz B, Kettritz R. Targeting Cathepsin C in PR3-ANCA Vasculitis. J Am Soc Nephrol 2022; 33:936-947. [PMID: 35292437 PMCID: PMC9063889 DOI: 10.1681/asn.2021081112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The ANCA autoantigens proteinase 3 (PR3) and myeloperoxidase (MPO) are exclusively expressed by neutrophils and monocytes. ANCA-mediated activation of these cells is the key driver of the vascular injury process in ANCA-associated vasculitis (AAV), and neutrophil serine proteases (NSPs) are disease mediators. Cathepsin C (CatC) from zymogens activates the proteolytic function of NSPs, including PR3. Lack of NSP zymogen activation results in neutrophils with strongly reduced NSP proteins. METHODS To explore AAV-relevant consequences of blocking NSP zymogen activation by CatC, we used myeloid cells from patients with Papillon-Lefèvre syndrome, a genetic deficiency of CatC, to assess NSPs and NSP-mediated endothelial cell injury. We also examined pharmacologic CatC inhibition in neutrophil-differentiated human hematopoietic stem cells, primary human umbilical vein cells, and primary glomerular microvascular endothelial cells. RESULTS Patients with Papillon-Lefèvre syndrome showed strongly reduced NSPs in neutrophils and monocytes. Neutrophils from these patients produced a negative PR3-ANCA test, presented less PR3 on the surface of viable and apoptotic cells, and caused significantly less damage in human umbilical vein cells. These findings were recapitulated in human stem cells, in which a highly specific CatC inhibitor, but not prednisolone, reduced NSPs without affecting neutrophil differentiation, reduced membrane PR3, and diminished neutrophil activation upon PR3-ANCA but not MPO-ANCA stimulation. Compared with healthy controls, neutrophils from patients with Papillon-Lefèvre syndrome transferred less proteolytically active NSPs to glomerular microvascular endothelial cells, the cell type targeted in ANCA-induced necrotizing crescentic glomerulonephritis. Finally, both genetic CatC deficiency and pharmacologic inhibition, but not prednisolone, reduced neutrophil-induced glomerular microvascular endothelial cell damage. CONCLUSIONS These findings may offer encouragement for clinical studies of adjunctive CatC inhibitor in patients with PR3-AAV.
Collapse
Affiliation(s)
- Uwe Jerke
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Paul Nicklin
- Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach, Germany
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach, Germany
| | - Peter Eickholz
- Peridontology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Katrin Nickles
- Peridontology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany .,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Shen XB, Chen X, Zhang ZY, Wu FF, Liu XH. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur J Med Chem 2021; 225:113818. [PMID: 34492551 DOI: 10.1016/j.ejmech.2021.113818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Cathepsin C, an important lysosomal cysteine protease, mediates the maturation process of neutrophil serine proteases, and participates in the inflammation and immune regulation process associated with polymorphonuclear neutrophils. Therefore, cathepsin C is considered to be an attractive target for treating inflammatory diseases. With INS1007 (trade name: brensocatib) being granted a breakthrough drug designation by FDA for the treatment of Adult Non-cystic Fibrosis Bronchiectasis and Coronavirus Disease 2019, the development of cathepsin C inhibitor will attract attentions from medicinal chemists in the future soon. Here, we summarized the research results of cathepsin C as a therapeutic target, focusing on the development of cathepsin C inhibitor, and provided guidance and reference opinions for the upcoming development boom of cathepsin C inhibitor.
Collapse
Affiliation(s)
- Xiao Bao Shen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fu Fang Wu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Xin Hua Liu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
15
|
Chen X, Yan Y, Zhang Z, Zhang F, Liu M, Du L, Zhang H, Shen X, Zhao D, Shi JB, Liu X. Discovery and In Vivo Anti-inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor. J Med Chem 2021; 64:11857-11885. [PMID: 34374541 DOI: 10.1021/acs.jmedchem.1c00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Faming Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Mingming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Haixia Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaobao Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Dahai Zhao
- Affiliated Hospital 2, Anhui Medical University, Hefei 230601, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
16
|
Granel J, Korkmaz B, Nouar D, Weiss SAI, Jenne DE, Lemoine R, Hoarau C. Pathogenicity of Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody in Granulomatosis With Polyangiitis: Implications as Biomarker and Future Therapies. Front Immunol 2021; 12:571933. [PMID: 33679731 PMCID: PMC7930335 DOI: 10.3389/fimmu.2021.571933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.
Collapse
Affiliation(s)
- Jérôme Granel
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| | - Dalila Nouar
- Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Stefanie A I Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Roxane Lemoine
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France
| | - Cyrille Hoarau
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
17
|
Korkmaz B, Lesner A, Marchand-Adam S, Moss C, Jenne DE. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS? J Med Chem 2020; 63:13258-13265. [PMID: 32692176 PMCID: PMC7413214 DOI: 10.1021/acs.jmedchem.0c00776] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
| | - Adam Lesner
- Faculty of Chemistry,
University of Gdansk, 80-398 Gdansk,
Poland
| | - Sylvain Marchand-Adam
- INSERM UMR-1100, Centre
d’Etude des Pathologies Respiratoires and
Université de Tours, 37032 Tours,
France
- Service de Pneumologie,
CHRU de Tours, 37032 Tours,
France
| | - Celia Moss
- Birmingham
Children’s Hospital and University of
Birmingham, B4 6NH Birmingham,
U.K.
| | - Dieter E. Jenne
- Comprehensive Pneumology Center,
Institute of Lung Biology and Disease, German Center for Lung Research
(DZL), Munich and Max-Planck Institute of
Neurobiology, 82152 Planegg-Martinsried,
Germany
| |
Collapse
|
18
|
Oriano M, Gramegna A, Terranova L, Sotgiu G, Sulaiman I, Ruggiero L, Saderi L, Wu B, Chalmers JD, Segal LN, Marchisio P, Blasi F, Aliberti S. Sputum neutrophil elastase associates with microbiota and Pseudomonas aeruginosa in bronchiectasis. Eur Respir J 2020; 56:13993003.00769-2020. [PMID: 32499333 DOI: 10.1183/13993003.00769-2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Neutrophilic inflammation is a major driver of bronchiectasis pathophysiology, and neutrophil elastase activity is the most promising biomarker evaluated in sputum to date. How active neutrophil elastase correlates with the lung microbiome in bronchiectasis is still unexplored. We aimed to understand whether active neutrophil elastase is associated with low microbial diversity and distinct microbiome characteristics. METHODS An observational, cross-sectional study was conducted at the bronchiectasis programme of the Policlinico Hospital in Milan, Italy, where adults with bronchiectasis were enrolled between March 2017 and March 2019. Active neutrophil elastase was measured on sputum collected during stable state, microbiota analysed through 16S rRNA gene sequencing, molecular assessment of respiratory pathogens carried out through real-time PCR and clinical data collected. RESULTS Among 185 patients enrolled, decreasing α-diversity, evaluated through the Shannon entropy (ρ -0.37, p<0.00001) and Pielou's evenness (ρ -0.36, p<0.00001) and richness (ρ -0.33, p<0.00001), was significantly correlated with increasing elastase. A significant difference in median levels of Shannon entropy as detected between patients with neutrophil elastase ≥20 µg·mL-1 (median 3.82, interquartile range 2.20-4.96) versus neutrophil elastase <20 µg·mL-1 (4.88, 3.68-5.80; p<0.0001). A distinct microbiome was found in these two groups, mainly characterised by enrichment with Pseudomonas in the high-elastase group and with Streptococcus in the low-elastase group. Further confirmation of the association of Pseudomonas aeruginosa with elevated active neutrophil elastase was found based on standard culture and targeted real-time PCR. CONCLUSIONS High levels of active neutrophil elastase are associated to low microbiome diversity and specifically to P. aeruginosa infection.
Collapse
Affiliation(s)
- Martina Oriano
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center, Milan, Italy.,Dept of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Andrea Gramegna
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center, Milan, Italy
| | - Leonardo Terranova
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center, Milan, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Dept of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, NY, USA
| | - Luca Ruggiero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Dept of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Benjamin Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, NY, USA
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, NY, USA
| | - Paola Marchisio
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Paediatric Highly Intensive Care Unit, Milan, Italy
| | - Francesco Blasi
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center, Milan, Italy
| | - Stefano Aliberti
- University of Milan, Dept of Pathophysiology and Transplantation, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Dept, Respiratory Unit and Adult Cystic Fibrosis Center, Milan, Italy
| |
Collapse
|
19
|
Käck H, Doyle K, Hughes SJ, Bodnarchuk MS, Lönn H, Van De Poël A, Palmer N. DPP1 Inhibitors: Exploring the Role of Water in the S2 Pocket of DPP1 with Substituted Pyrrolidines. ACS Med Chem Lett 2019; 10:1222-1227. [PMID: 31413809 DOI: 10.1021/acsmedchemlett.9b00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
A series of pyrrolidine amino nitrile DPP1 inhibitors have been developed and characterized. The S2 pocket structure-activity relationship for these compounds shows significant gains in potency for DPP1 from interacting further with target residues and a network of water molecules in the binding pocket. Herein we describe the X-ray crystal structures of several of these compounds alongside an analysis of factors influencing the inhibitory potency toward DPP1 of which stabilization of the water network, demonstrated using Grand Canonical Monte Carlo simulations and free energy calculations, is attributed as a main factor.
Collapse
Affiliation(s)
- Helena Käck
- Structure, Biophysics and Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kevin Doyle
- Charles River Discovery Services, Cambridge, U.K
| | - Samantha J. Hughes
- Charles River Discovery Services, Cambridge, U.K
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, U.K
| | | | - Hans Lönn
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca (RIA), Gothenburg, Sweden
| | | | | |
Collapse
|
20
|
Premedication with a cathepsin C inhibitor alleviates early primary graft dysfunction in mouse recipients after lung transplantation. Sci Rep 2019; 9:9925. [PMID: 31289357 PMCID: PMC6616352 DOI: 10.1038/s41598-019-46206-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophil serine proteases (NSPs), like proteinase 3 (PR3) and neutrophil elastase (NE) are implicated in ischemia-reperfusion responses after lung transplantation (LTx). Cathepsin C (CatC) acts as the key regulator of NSP maturation during biosynthesis. We hypothesized that CatC inhibitors would reduce vascular breakdown and inflammation during reperfusion in pretreated lung transplant recipients by blocking NSP maturation in the bone marrow. An orthotopic LTx model in mice was used to mimic the induction of an ischemia-reperfusion response after 18 h cold storage of the graft and LTx. Recipient mice were treated subcutaneously with a chemical CatC inhibitor (ICatC) for 10 days prior to LTx. We examined the effect of the ICatC treatment by measuring the gas exchange function of the left lung graft, protein content, neutrophil numbers and NSP activities in the bone marrow 4 h after reperfusion. Pre-operative ICatC treatment of the recipient mice improved early graft function and lead to the disappearance of active NSP protein in the transplanted lung. NSP activities were also substantially reduced in bone marrow neutrophils. Preemptive NSP reduction by CatC inhibition may prove to be a viable and effective approach to reduce immediate ischemia reperfusion responses after LTx.
Collapse
|
21
|
Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn 2+ to inhibit cysteinyl cathepsins: review and implications. Biometals 2019; 32:575-593. [PMID: 31044334 PMCID: PMC6647370 DOI: 10.1007/s10534-019-00197-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/13/2019] [Indexed: 01/28/2023]
Abstract
Excessive activities of cysteinyl cathepsins (CysCts) contribute to the progress of many diseases; however, therapeutic inhibition has been problematic. Zn2+ is a natural inhibitor of proteases with CysHis dyads or CysHis(Xaa) triads. Biguanide forms bidentate metal complexes through the two imino nitrogens. Here, it is discussed that phenformin (phenylethyl biguanide) is a model for recruitment of endogenous Zn2+ to inhibit CysHis/CysHis(X) peptidolysis. Phenformin is a Zn2+-interactive, anti-proteolytic agent in bioassay of living tissue. Benzoyl-L-arginine amide (BAA) is a classical substrate of papain-like proteases; the amide bond is scissile. In this review, the structures of BAA and the phenformin-Zn2+ complex were compared in silico. Their chemistry and dimensions are discussed in light of the active sites of papain-like proteases. The phenyl moieties of both structures bind to the "S2" substrate-binding site that is typical of many proteases. When the phenyl moiety of BAA binds to S2, then the scissile amide bond is directed to the position of the thiolate-imidazolium ion pair, and is then hydrolyzed. However, when the phenyl moiety of phenformin binds to S2, then the coordinated Zn2+ is directed to the identical position; and catalysis is inhibited. Phenformin stabilizes a "Zn2+ sandwich" between the drug and protease active site. Hundreds of biguanide derivatives have been synthesized at the 1 and 5 nitrogen positions; many more are conceivable. Various substituent moieties can register with various arrays of substrate-binding sites so as to align coordinated Zn2+ with catalytic partners of diverse proteases. Biguanide is identified here as a modifiable pharmacophore for synthesis of therapeutic CysCt inhibitors with a wide range of potencies and specificities. Phenformin-Zn2+ Complex.
Collapse
|
22
|
Korkmaz B, Lesner A, Wysocka M, Gieldon A, Håkansson M, Gauthier F, Logan DT, Jenne DE, Lauritzen C, Pedersen J. Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C. Biochem Pharmacol 2019; 164:349-367. [PMID: 30978322 DOI: 10.1016/j.bcp.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Cathepsin C (CatC) is a dipeptidyl-exopeptidase which activates neutrophil serine protease precursors (elastase, proteinase 3, cathepsin G and NSP4) by removing their N-terminal propeptide in bone marrow cells at the promyelocytic stage of neutrophil differentiation. The resulting active proteases are implicated in chronic inflammatory and autoimmune diseases. Hence, inhibition of CatC represents a therapeutic strategy to suppress excessive protease activities in various neutrophil mediated diseases. We designed and synthesized a series of dipeptidyl cyclopropyl nitrile compounds as putative CatC inhibitors. One compound, IcatCXPZ-01 ((S)-2-amino-N-((1R,2R)-1-cyano-2-(4'-(4-methylpiperazin-1-ylsulfonyl)biphenyl-4-yl)cyclopropyl)butanamide)) was identified as a potent inhibitor of both human and rodent CatC. In mice, pharmacokinetic studies revealed that IcatCXPZ-01 accumulated in the bone marrow reaching levels suitable for CatC inhibition. Subcutaneous administration of IcatCXPZ-01 in a monoclonal anti-collagen antibody induced mouse model of rheumatoid arthritis resulted in statistically significant anti-arthritic activity with persistent decrease in arthritis scores and paw thickness.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", 37032 Tours, France; Université de Tours, 37032 Tours, France.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Francis Gauthier
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", 37032 Tours, France; Université de Tours, 37032 Tours, France
| | | | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich, Germany; Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | | | - John Pedersen
- Neuprozyme Therapeutics A/S, 2970 Hörsholm, Denmark.
| |
Collapse
|
23
|
Kaoukabi A, Belachemi L, Lahcini M, Massuard MV, Croix C. Efficient Synthesis of New 2H‐Chromene Retinoids Hybrid Derivatives by Suzuki Cross‐coupling Reactions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asma Kaoukabi
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Larbi Belachemi
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Marie‐Claude Viaud Massuard
- CNRS UMR 7292 GICC, Molecular and Therapeutical Innovation University of Tours 31, Avenue Monge Tours France
| | - Cécile Croix
- CNRS UMR 7292 GICC, Molecular and Therapeutical Innovation University of Tours 31, Avenue Monge Tours France
| |
Collapse
|
24
|
AhYoung AP, Lin SJ, Gerhardy S, van Lookeren Campagne M, Kirchhofer D. An ancient mechanism of arginine-specific substrate cleavage: What's 'up' with NSP4? Biochimie 2019; 166:19-26. [PMID: 30946946 DOI: 10.1016/j.biochi.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
25
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Seren S, Rashed Abouzaid M, Eulenberg-Gustavus C, Hirschfeld J, Nasr Soliman H, Jerke U, N'Guessan K, Dallet-Choisy S, Lesner A, Lauritzen C, Schacher B, Eickholz P, Nagy N, Szell M, Croix C, Viaud-Massuard MC, Al Farraj Aldosari A, Ragunatha S, Ibrahim Mostafa M, Giampieri F, Battino M, Cornillier H, Lorette G, Stephan JL, Goizet C, Pedersen J, Gauthier F, Jenne DE, Marchand-Adam S, Chapple IL, Kettritz R, Korkmaz B. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis. J Biol Chem 2018; 293:12415-12428. [PMID: 29925593 DOI: 10.1074/jbc.ra118.001922] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Membrane-bound proteinase 3 (PR3m) is the main target antigen of anti-neutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis, a systemic small-vessel vasculitis. Binding of ANCA to PR3m triggers neutrophil activation with the secretion of enzymatically active PR3 and related neutrophil serine proteases, thereby contributing to vascular damage. PR3 and related proteases are activated from pro-forms by the lysosomal cysteine protease cathepsin C (CatC) during neutrophil maturation. We hypothesized that pharmacological inhibition of CatC provides an effective measure to reduce PR3m and therefore has implications as a novel therapeutic approach in granulomatosis with polyangiitis. We first studied neutrophilic PR3 from 24 patients with Papillon-Lefèvre syndrome (PLS), a genetic form of CatC deficiency. PLS neutrophil lysates showed a largely reduced but still detectable (0.5-4%) PR3 activity when compared with healthy control cells. Despite extremely low levels of cellular PR3, the amount of constitutive PR3m expressed on the surface of quiescent neutrophils and the typical bimodal membrane distribution pattern were similar to what was observed in healthy neutrophils. However, following cell activation, there was no significant increase in the total amount of PR3m on PLS neutrophils, whereas the total amount of PR3m on healthy neutrophils was significantly increased. We then explored the effect of pharmacological CatC inhibition on PR3 stability in normal neutrophils using a potent cell-permeable CatC inhibitor and a CD34+ hematopoietic stem cell model. Human CD34+ hematopoietic stem cells were treated with the inhibitor during neutrophil differentiation over 10 days. We observed strong reductions in PR3m, cellular PR3 protein, and proteolytic PR3 activity, whereas neutrophil differentiation was not compromised.
Collapse
Affiliation(s)
- Seda Seren
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | | | - Claudia Eulenberg-Gustavus
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Josefine Hirschfeld
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Hala Nasr Soliman
- Medical Molecular Genetics, National Research Centre, Cairo 12622, Egypt
| | - Uwe Jerke
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Koffi N'Guessan
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Sandrine Dallet-Choisy
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Adam Lesner
- the Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Beate Schacher
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Peter Eickholz
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Nikoletta Nagy
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Marta Szell
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Cécile Croix
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Marie-Claude Viaud-Massuard
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Abdullah Al Farraj Aldosari
- the Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Shivanna Ragunatha
- the Department of Dermatology, Venereology, and Leprosy, ESIC Medical College and PGIMSR Rajajinagar, Bengaluru, Karnataka 560010, India
| | | | - Francesca Giampieri
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Maurizio Battino
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Hélène Cornillier
- Service de Dermatologie, Centre Hospitalier Universitaire de Tours, Université de Tours, 37000 Tours, France
| | - Gérard Lorette
- UMR-INRA1282 "Laboratoire de Virologie et Immunologie Moléculaires," Université de Tours, 37000 Tours, France
| | - Jean-Louis Stephan
- the Service d'Hématologie Immunologie et Rhumatologie Pédiatrique, Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez, France
| | - Cyril Goizet
- INSERM U-1211, Rare Diseases, Genetic and Metabolism, MRGM Laboratory, Pellegrin Hospital and University, 33000 Bordeaux, France
| | | | - Francis Gauthier
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Dieter E Jenne
- the Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich, Germany.,the Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany, and
| | - Sylvain Marchand-Adam
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Iain L Chapple
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Ralph Kettritz
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany.,the Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Brice Korkmaz
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France,
| |
Collapse
|
27
|
Palmér R, Mäenpää J, Jauhiainen A, Larsson B, Mo J, Russell M, Root J, Prothon S, Chialda L, Forte P, Egelrud T, Stenvall K, Gardiner P. Dipeptidyl Peptidase 1 Inhibitor AZD7986 Induces a Sustained, Exposure-Dependent Reduction in Neutrophil Elastase Activity in Healthy Subjects. Clin Pharmacol Ther 2018; 104:1155-1164. [PMID: 29484635 PMCID: PMC6282495 DOI: 10.1002/cpt.1053] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
Neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. High NSP levels can be detrimental, particularly in lung tissue, and inhibition of NSPs is therefore an interesting therapeutic opportunity in multiple lung diseases, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. We conducted a randomized, placebo‐controlled, first‐in‐human study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of the DPP1 inhibitor AZD7986 in healthy subjects. Pharmacokinetic and pharmacodynamic data were analyzed using nonlinear mixed effects modeling and showed that AZD7986 inhibits whole blood NE activity in an exposure‐dependent, indirect manner—consistent with in vitro and preclinical predictions. Several dose‐dependent, possibly DPP1‐related, nonserious skin findings were observed, but these were not considered to prevent further clinical development. Overall, the study results provided confidence to progress AZD7986 to phase II and supported selection of a clinically relevant dose.
Collapse
Affiliation(s)
- Robert Palmér
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jukka Mäenpää
- Patient Safety, Respiratory, Inflammation, Autoimmunity, Infections and Vaccines Therapeutic Area, AstraZeneca, Gothenburg, Sweden
| | - Alexandra Jauhiainen
- Early Clinical Biometrics, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bengt Larsson
- RIA Translational Medicines Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Mo
- Translational Biology, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Muir Russell
- Precision Medicine Laboratories, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - James Root
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanne Prothon
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ligia Chialda
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | - Pablo Forte
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | | | - Kristina Stenvall
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Philip Gardiner
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
28
|
Lamprecht P, Kerstein A, Klapa S, Schinke S, Karsten CM, Yu X, Ehlers M, Epplen JT, Holl-Ulrich K, Wiech T, Kalies K, Lange T, Laudien M, Laskay T, Gemoll T, Schumacher U, Ullrich S, Busch H, Ibrahim S, Fischer N, Hasselbacher K, Pries R, Petersen F, Weppner G, Manz R, Humrich JY, Nieberding R, Riemekasten G, Müller A. Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides. Front Immunol 2018; 9:680. [PMID: 29686675 PMCID: PMC5900791 DOI: 10.3389/fimmu.2018.00680] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) targeting proteinase 3 (PR3) and myeloperoxidase expressed by innate immune cells (neutrophils and monocytes) are salient diagnostic and pathogenic features of small vessel vasculitis, comprising granulomatosis with polyangiitis (GPA), microscopic polyangiitis, and eosinophilic GPA. Genetic studies suggest that ANCA-associated vasculitides (AAV) constitute separate diseases, which share common immunological and pathological features, but are otherwise heterogeneous. The successful therapeutic use of anti-CD20 antibodies emphasizes the prominent role of ANCA and possibly other autoantibodies in the pathogenesis of AAV. However, to elucidate causal effects in AAV, a better understanding of the complex interplay leading to the emergence of B lymphocytes that produce pathogenic ANCA remains a challenge. Different scenarios seem possible; e.g., the break of tolerance induced by a shift from non-pathogenic toward pathogenic autoantigen epitopes in inflamed tissue. This review gives a brief overview on current knowledge about genetic and epigenetic factors, barrier dysfunction and chronic non-resolving inflammation, necro-inflammatory auto-amplification of cellular death and inflammation, altered autoantigen presentation, alternative complement pathway activation, alterations within peripheral and inflamed tissue-residing T- and B-cell populations, ectopic lymphoid tissue neoformation, the characterization of PR3-specific T-cells, properties of ANCA, links between autoimmune disease and infection-triggered pathology, and animal models in AAV.
Collapse
Affiliation(s)
- Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Sebastian Klapa
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Susanne Schinke
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen, China.,Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University, Bochum, Germany.,University of Witten/Herdecke, ZBAF, Witten, Germany
| | | | - Thorsten Wiech
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Martin Laudien
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Kiel, Germany
| | - Tamas Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Timo Gemoll
- Department of Surgery, Section for Translational Surgical Oncology and Biobanking, University of Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Ullrich
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Medical Department 3, Gastroenterology/Rheumatology, Municipal Hospital Kiel, Kiel, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ralph Pries
- Department of Otorhinolaryngology, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Gesche Weppner
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Relana Nieberding
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Götzfried J, Smirnova NF, Morrone C, Korkmaz B, Yildirim AÖ, Eickelberg O, Jenne DE. Preservation with α 1-antitrypsin improves primary graft function of murine lung transplants. J Heart Lung Transplant 2018; 37:1021-1028. [PMID: 29776812 PMCID: PMC6078707 DOI: 10.1016/j.healun.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vascular damage and primary graft dysfunction increase with prolonged preservation times of transplanted donor lungs. Hence, storage and conservation of donated lungs in protein-free, dextran-containing electrolyte solutions, like Perfadex, is limited to about 6 hours. We hypothesized that transplanted lungs are protected against neutrophil-mediated proteolytic damage by adding α1-anti-trypsin (AAT), a highly abundant human plasma proteinase inhibitor, to Perfadex. METHODS A realistic clinically oriented murine model of lung transplantation was used to simulate the ischemia-reperfusion process. Lung grafts were stored at 4°C in Perfadex solution supplemented with AAT or an AAT mutant devoid of elastase-inhibiting activity for 18 hours. We examined wild-type and proteinase 3/neutrophil elastase (PR3/NE) double-deficient mice as graft recipients. Gas exchange function and infiltrating neutrophils of the transplanted lung, as well as protein content and neutrophil numbers in the bronchoalveolar lavage fluid, were determined. RESULTS AAT as a supplement to Perfadex reduced the extent of primary graft dysfunction and early neutrophil responses after extended storage for 18 hours at 4°C and 4-hour reperfusion in the recipients. Double-knockout recipients that lack elastase-like activities in neutrophils were also protected from early reperfusion injury, but not lung grafts that were perfused with a reactive center mutant of AAT devoid of elastase-inhibiting activity. CONCLUSIONS PR3 and NE, the principal targets of AAT, are major triggers of post-ischemic reperfusion damage. Their effective inhibition in the graft and recipient is a promising strategy for organ usage after storage for >6 hours.
Collapse
Affiliation(s)
- Jessica Götzfried
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Natalia F Smirnova
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Brice Korkmaz
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado, USA
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany; German Center for Lung Research, Munich, Germany; Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany.
| |
Collapse
|
30
|
Guarino C, Gruba N, Grzywa R, Dyguda-Kazimierowicz E, Hamon Y, Łȩgowska M, Skoreński M, Dallet-Choisy S, Marchand-Adam S, Kellenberger C, Jenne DE, Sieńczyk M, Lesner A, Gauthier F, Korkmaz B. Exploiting the S4-S5 Specificity of Human Neutrophil Proteinase 3 to Improve the Potency of Peptidyl Di(chlorophenyl)-phosphonate Ester Inhibitors: A Kinetic and Molecular Modeling Analysis. J Med Chem 2018; 61:1858-1870. [PMID: 29442501 DOI: 10.1021/acs.jmedchem.7b01416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neutrophilic serine protease proteinase 3 (PR3) is involved in inflammation and immune response and thus appears as a therapeutic target for a variety of infectious and inflammatory diseases. Here we combined kinetic and molecular docking studies to increase the potency of peptidyl-diphenyl phosphonate PR3 inhibitors. Occupancy of the S1 subsite of PR3 by a nVal residue and of the S4-S5 subsites by a biotinylated Val residue as obtained in biotin-VYDnVP(O-C6H4-4-Cl)2 enhanced the second-order inhibition constant kobs/[I] toward PR3 by more than 10 times ( kobs/[I] = 73000 ± 5000 M-1 s-1) as compared to the best phosphonate PR3 inhibitor previously reported. This inhibitor shows no significant inhibitory activity toward human neutrophil elastase and resists proteolytic degradation in sputa from cystic fibrosis patients. It also inhibits macaque PR3 but not the PR3 from rodents and can thus be used for in vivo assays in a primate model of inflammation.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Natalia Gruba
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Renata Grzywa
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Edyta Dyguda-Kazimierowicz
- Faculty of Chemistry, Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Yveline Hamon
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Monika Łȩgowska
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Marcin Skoreński
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Sandrine Dallet-Choisy
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Sylvain Marchand-Adam
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques , CNRS-Unité Mixte de Recherche (UMR) , 13288 Marseille , France
| | - Dieter E Jenne
- Institute of Lung Biology and Disease, German Center for Lung Research (DZL) , Comprehensive Pneumology Center Munich and Max Planck Institute of Neurobiology , 82152 Planegg-Martinsried , Germany
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Adam Lesner
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Francis Gauthier
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Brice Korkmaz
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| |
Collapse
|
31
|
Chalmers JD, Chotirmall SH. Bronchiectasis: new therapies and new perspectives. THE LANCET RESPIRATORY MEDICINE 2018; 6:715-726. [PMID: 29478908 DOI: 10.1016/s2213-2600(18)30053-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
European Respiratory Society guidelines for the management of adult bronchiectasis highlight the paucity of treatment options available for patients with this disorder. No treatments have been licensed by regulatory agencies worldwide, and most therapies used in clinical practice are based on very little evidence. Development of new treatments is needed urgently. We did a systematic review of scientific literature and clinical trial registries to identify agents in early-to-late clinical development for bronchiectasis in adults. In this Review, we discuss the mechanisms and potential roles of emerging therapies, including drugs that target airway and systemic inflammation, mucociliary clearance, and epithelial dysfunction. To ensure these treatments achieve success in randomised clinical trials-and therefore reach patients-we propose a reassessment of the current approach to bronchiectasis. Although understanding of the pathophysiology of bronchiectasis is at an early stage, we argue that bronchiectasis is a heterogeneous disease with many different biological mechanisms that drive disease progression (endotypes), and therefore the so-called treatable traits approach used in asthma and chronic obstructive pulmonary disease could be applied to bronchiectasis, with future trials targeted at the specific disease subgroups most likely to benefit.
Collapse
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Bullón P, Castejón-Vega B, Román-Malo L, Jimenez-Guerrero MP, Cotán D, Forbes-Hernandez TY, Varela-López A, Pérez-Pulido AJ, Giampieri F, Quiles JL, Battino M, Sánchez-Alcázar JA, Cordero MD. Autophagic dysfunction in patients with Papillon-Lefèvre syndrome is restored by recombinant cathepsin C treatment. J Allergy Clin Immunol 2018; 142:1131-1143.e7. [PMID: 29410039 DOI: 10.1016/j.jaci.2018.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cathepsin C (CatC) is a lysosomal enzyme involved in activation of serine proteases from immune and inflammatory cells. Several loss-of-function mutations in the CatC gene have been shown to be the genetic mark of Papillon-Lefèvre syndrome (PLS), a rare autosomal recessive disease characterized by severe early-onset periodontitis, palmoplantar hyperkeratosis, and increased susceptibility to infections. Deficiencies or dysfunction in other cathepsin family proteins, such as cathepsin B or D, have been associated with autophagic and lysosomal disorders. OBJECTIVES Here we characterized the basis for autophagic dysfunction in patients with PLS by analyzing skin fibroblasts derived from patients with several mutations in the CatC gene and reduced enzymatic activity. METHODS Skin fibroblasts were isolated from patients with PLS assessed by using genetic analysis. Authophagic flux dysfunction was evaluated by examining accumulation of p62/SQSTM1 and a bafilomycin assay. Ultrastructural analysis further confirmed abnormal accumulation of autophagic vesicles in mutant cells. A recombinant CatC protein was produced by a baculovirus system in insect cell cultures. RESULTS Mutant fibroblasts from patients with PLS showed alterations in oxidative/antioxidative status, reduced oxygen consumption, and a marked autophagic dysfunction associated with autophagosome accumulation. These alterations were accompanied by lysosomal permeabilization, cathepsin B release, and NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. Treatment of mutant fibroblasts with recombinant CatC improved cell growth and autophagic flux and partially restored lysosomal permeabilization. CONCLUSIONS Our data provide a novel molecular mechanism underlying PLS. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for PLS.
Collapse
Affiliation(s)
- Pedro Bullón
- Research Laboratory, Dental School, University of Sevilla, Seville, Spain; Department of Periodontology, Dental School, University of Sevilla, Seville, Spain
| | | | - Lourdes Román-Malo
- Research Laboratory, Dental School, University of Sevilla, Seville, Spain; Department of Periodontology, Dental School, University of Sevilla, Seville, Spain
| | - María Paz Jimenez-Guerrero
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Seville, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Mario D Cordero
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain.
| |
Collapse
|
33
|
Miller BE, Mayer RJ, Goyal N, Bal J, Dallow N, Boyce M, Carpenter D, Churchill A, Heslop T, Lazaar AL. Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br J Clin Pharmacol 2017; 83:2813-2820. [PMID: 28800383 DOI: 10.1111/bcp.13398] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS Cathepsin C (CTSC) is necessary for the activation of several serine proteases including neutrophil elastase (NE), cathepsin G and proteinase 3. GSK2793660 is an oral, irreversible inhibitor of CTSC that is hypothesized to provide an alternative route to achieve NE inhibition and was tested in a Phase I study. METHODS Single escalating oral doses of GSK2793660 from 0.5 to 20 mg or placebo were administered in a randomized crossover design to healthy male subjects; a separate cohort received once daily doses of 12 mg or placebo for 21 days. Data were collected on safety, pharmacokinetics, CTSC enzyme inhibition and blood biomarkers. RESULTS Single, oral doses of GSK2793660 were able to dose-dependently inhibit whole blood CTSC activity. Once daily dosing of 12 mg GSK2793660 for 21 days achieved ≥90% inhibition (95% CI: 56, 130) of CTSC within 3 h on day 1. Only modest reductions of whole blood enzyme activity of approximately 20% were observed for NE, cathepsin G and proteinase 3. Seven of 10 subjects receiving repeat doses of GSK2793660 manifested epidermal desquamation on palmar and plantar surfaces beginning 7-10 days after dosing commencement. There were no other clinically important safety findings. CONCLUSIONS GSK2793660 inhibited CTSC activity but not the activity of downstream neutrophil serine proteases. The palmar-plantar epidermal desquamation suggests a previously unidentified role for CTSC or one of its target proteins in the maintenance and integrity of the epidermis at these sites, with some similarities to the phenotype of CTSC-deficient humans.
Collapse
Affiliation(s)
- Bruce E Miller
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ruth J Mayer
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Navin Goyal
- Clinical Pharmacology Modeling and Simulation, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Joanne Bal
- Clinical Pharmacology Sciences and Study Operations, GSK R&D, Stockley Park, UK
| | | | - Malcolm Boyce
- Hammersmith Medicines Research, Cumberland Avenue, London, UK
| | - Donald Carpenter
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | - Teresa Heslop
- Department of In vitro/In vivo Translation, GlaxoSmithKline, Ware, UK
| | - Aili L Lazaar
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| |
Collapse
|
34
|
Zavašnik-Bergant T, Vidmar R, Sekirnik A, Fonović M, Salát J, Grunclová L, Kopáček P, Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front Cell Infect Microbiol 2017; 7:288. [PMID: 28713775 PMCID: PMC5492865 DOI: 10.3389/fcimb.2017.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 11/14/2022] Open
Abstract
To ensure successful feeding tick saliva contains a number of inhibitory proteins that interfere with the host immune response and help to create a permissive environment for pathogen transmission. Among the potential targets of the salivary cystatins are two host cysteine proteases, cathepsin S, which is essential for antigen- and invariant chain-processing, and cathepsin C (dipeptidyl peptidase 1, DPP1), which plays a critical role in processing and activation of the granule serine proteases. Here, the effect of salivary cystatin OmC2 from Ornithodoros moubata was studied using differentiated MUTZ-3 cells as a model of immature dendritic cells of the host skin. Following internalization, cystatin OmC2 was initially found to inhibit the activity of several cysteine cathepsins, as indicated by the decreased rates of degradation of fluorogenic peptide substrates. To identify targets, affinity chromatography was used to isolate His-tagged cystatin OmC2 together with the bound proteins from MUTZ-3 cells. Cathepsins S and C were identified in these complexes by mass spectrometry and confirmed by immunoblotting. Furthermore, reduced increase in the surface expression of MHC II and CD86, which are associated with the maturation of dendritic cells, was observed. In contrast, human inhibitor cystatin C, which is normally expressed and secreted by dendritic cells, did not affect the expression of CD86. It is proposed that internalization of salivary cystatin OmC2 by the host dendritic cells targets cathepsins S and C, thereby affecting their maturation.
Collapse
Affiliation(s)
- Tina Zavašnik-Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Andreja Sekirnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|