1
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
2
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
3
|
Bini J, Strober J, Kapinos M, Zheng MQ, Li S, Ropchan J, Nabulsi N, Huang Y, Perry RJ, Vatner DF, Carson RE. Quantification of Multi-Organ 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme Levels in a Zucker Fatty Rat Model: A PET Imaging Study. Mol Imaging 2024; 23:15353508241301584. [PMID: 40270581 PMCID: PMC12014946 DOI: 10.1177/15353508241301584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 04/25/2025] Open
Abstract
Background In rodents, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the conversion of inactive 11-dehydrocorticosterone to the active hormone corticosterone. Dysregulation of intracellular glucocorticoid action is implicated in metabolic diseases. Assessing 11β-HSD1 enzyme levels in vivo may be key to understanding obesity pathophysiology. Objective We used a Zucker Fatty (ZF) rat model and [18F]AS2471907 PET imaging to determine appropriate kinetic modeling methods and assess changes in 11β-HSD1 levels due to obesity in the liver, white and brown adipose tissue (WAT/BAT), and brain. Material and Methods To validate [18F]AS2471907 PET in preclinical models, time-activity curves (TACs) were generated and kinetic modeling was performed with image-derived input functions (IDIFs) extracted from multiple locations. Quantitative estimates of radioligand binding were compared with ex vivo 11β-HSD1 protein expression. Validated quantitative PET kinetic modeling methods were then used to assess differences in 11β-HSD1 between lean and obese ZF rats. Metabolic disease status was confirmed with stable isotopes tracer studies of glucose and fatty acid metabolism. Results Obesity is associated with decreased brain 11β-HSD1 levels, measured by [18F]AS2471907 PET, which correlated with measures of glucose and fatty acid metabolism. Conclusion We demonstrate that [18F]AS2471907 PET can provide useful quantification of 11β-HSD1 levels in a rodent model of obesity.
Collapse
Affiliation(s)
- Jason Bini
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan Strober
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Songye Li
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel J. Perry
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel F. Vatner
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Jeanneteau F. Stress and the risk of Alzheimer dementia: Can deconstructed engrams be rebuilt? J Neuroendocrinol 2023; 35:e13235. [PMID: 36775895 DOI: 10.1111/jne.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The exact neuropathological mechanism by which the dementia process unfolds is under intense scrutiny. The disease affects about 38 million people worldwide, 70% of which are clinically diagnosed with Alzheimer's disease (AD). If the destruction of synapses essential for learning, planning and decision-making is part of the problem, must the restoration of previously lost synapses be part of the solution? It is plausible that neuronal capacity to restitute information corresponds with the adaptive capacity of its connectivity reserve. A challenge will be to promote the functional connectivity that can compensate for the lost one. This will require better clarification of the remodeling of functional connectivity during the progression of AD dementia and its reversal upon experimental treatment. A major difficulty is to promote the neural pathways that are atrophied in AD dementia while suppressing others that are bolstered. Therapeutic strategies should aim at scaling functional connectivity to a just balance between the atrophic and hypertrophic systems. However, the exact factors that can help reach this objective are still unclear. Similarities between the effects of chronic stress and some neuropathological mechanisms underlying AD dementia support the idea that common components deserve prime attention as therapeutic targets.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
5
|
Khan S, Livingstone DEW, Zielinska A, Doig CL, Cobice DF, Esteves CL, Man JTY, Homer NZM, Seckl JR, MacKay CL, Webster SP, Lavery GG, Chapman KE, Walker BR, Andrew R. Contribution of local regeneration of glucocorticoids to tissue steroid pools. J Endocrinol 2023; 258:e230034. [PMID: 37343234 PMCID: PMC10448579 DOI: 10.1530/joe-23-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2022] [Indexed: 06/23/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11βHSD1) is a drug target to attenuate adverse effects of chronic glucocorticoid excess. It catalyses intracellular regeneration of active glucocorticoids in tissues including brain, liver and adipose tissue (coupled to hexose-6-phosphate dehydrogenase, H6PDH). 11βHSD1 activity in individual tissues is thought to contribute significantly to glucocorticoid levels at those sites, but its local contribution vs glucocorticoid delivery via the circulation is unknown. Here, we hypothesised that hepatic 11βHSD1 would contribute significantly to the circulating pool. This was studied in mice with Cre-mediated disruption of Hsd11b1 in liver (Alac-Cre) vs adipose tissue (aP2-Cre) or whole-body disruption of H6pdh. Regeneration of [9,12,12-2H3]-cortisol (d3F) from [9,12,12-2H3]-cortisone (d3E), measuring 11βHSD1 reductase activity was assessed at steady state following infusion of [9,11,12,12-2H4]-cortisol (d4F) in male mice. Concentrations of steroids in plasma and amounts in liver, adipose tissue and brain were measured using mass spectrometry interfaced with matrix-assisted laser desorption ionisation or liquid chromatography. Amounts of d3F were higher in liver, compared with brain and adipose tissue. Rates of appearance of d3F were ~6-fold slower in H6pdh-/- mice, showing the importance for whole-body 11βHSD1 reductase activity. Disruption of liver 11βHSD1 reduced the amounts of d3F in liver (by ~36%), without changes elsewhere. In contrast disruption of 11βHSD1 in adipose tissue reduced rates of appearance of circulating d3F (by ~67%) and also reduced regenerated of d3F in liver and brain (both by ~30%). Thus, the contribution of hepatic 11βHSD1 to circulating glucocorticoid levels and amounts in other tissues is less than that of adipose tissue.
Collapse
Affiliation(s)
- S Khan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D E W Livingstone
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - A Zielinska
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - C L Doig
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - D F Cobice
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - C L Esteves
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J T Y Man
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - N Z M Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J R Seckl
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - C L MacKay
- SIRCAMS, School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, Edinburgh, UK
| | - S P Webster
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - G G Lavery
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - K E Chapman
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - B R Walker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Clinical & Translational Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - R Andrew
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
7
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
8
|
Naredo-Gonzalez G, Upreti R, Jansen MA, Semple S, Sutcliffe OB, Marshall I, Walker BR, Andrew R. Non-invasive in vivo assessment of 11β-hydroxysteroid dehydrogenase type 1 activity by 19F-Magnetic Resonance Spectroscopy. Sci Rep 2022; 12:16268. [PMID: 36175417 PMCID: PMC9523021 DOI: 10.1038/s41598-022-18740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies tissue glucocorticoid levels and is a pharmaceutical target in diabetes and cognitive decline. Clinical translation of inhibitors is hampered by lack of in vivo pharmacodynamic biomarkers. Our goal was to monitor substrates and products of 11β-HSD1 non-invasively in liver via 19Fluorine magnetic resonance spectroscopy (19F-MRS). Interconversion of mono/poly-fluorinated substrate/product pairs was studied in Wistar rats (male, n = 6) and healthy men (n = 3) using 7T and 3T MRI scanners, respectively. Here we show that the in vitro limit of detection, as absolute fluorine content, was 0.625 μmole in blood. Mono-fluorinated steroids, dexamethasone and 11-dehydrodexamethasone, were detected in phantoms but not in vivo in human liver following oral dosing. A non-steroidal polyfluorinated tracer, 2-(phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethanone and its metabolic product were detected in vivo in rat liver after oral administration of the keto-substrate, reading out reductase activity. Administration of a selective 11β-HSD1 inhibitor in vivo in rats altered total liver 19F-MRS signal. We conclude that there is insufficient sensitivity to measure mono-fluorinated tracers in vivo in man with current dosage regimens and clinical scanners. However, since reductase activity was observed in rats using poly-fluorinated tracers, this concept could be pursued for translation to man with further development.
Collapse
Affiliation(s)
- Gregorio Naredo-Gonzalez
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Rita Upreti
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Maurits A Jansen
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Scott Semple
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ian Marshall
- Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4SB, Scotland, UK
| | - Brian R Walker
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.
| |
Collapse
|
9
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
10
|
Merdas M, Lagarrigue M, Vanbellingen Q, Umbdenstock T, Da Violante G, Pineau C. On-tissue chemical derivatization reagents for matrix-assisted laser desorption/ionization mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4731. [PMID: 34080257 DOI: 10.1002/jms.4731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a key tool for the analysis of biological tissues. It provides spatial and quantitative information about different types of analytes within tissue sections. Despite the increasing improvements of this technique, the low detection sensitivity of some compounds remains an important challenge to overcome. Poor sensitivity is related to weak ionization efficiency, low abundance of analytes and matrix ions, or endogenous interferences. On-tissue chemical derivatization (OTCD) has proven to be an important solution to these issues and is increasingly employed in MALDI MSI studies. OTCD reagents, synthesized or commercially available, have been essentially used for the detection of small exogenous or endogenous molecules within tissues. Optimally, an OTCD reaction is performed in mild conditions, in an acceptable range of time, preserves the integrity of the tissues, and prevents the delocalization. In addition to their reactivity with a targeted chemical function, some OTCD reagents can also be used as a matrix, which simplifies the sample preparation procedure. In this review, we present an exhaustive overview of OTCD reagents and methods used in MALDI MSI studies.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
- DMPK Department, Technologie Servier, Orléans, 45007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
| | | | | | | | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, F-35042, France
- Protim, Univ Rennes, Rennes, F-35042, France
| |
Collapse
|
11
|
Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 2021; 413:2637-2653. [PMID: 33532914 DOI: 10.1007/s00216-021-03189-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.
Collapse
|
12
|
Mackay CLL, Soltwisch J, Heijs B, Smith KW, Cruickshank FL, Nyhuis A, Dreisewerd K, Cobice D. Spatial distribution of isobaric androgens in target tissues using chemical derivatization and MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument. RSC Adv 2021; 11:33916-33925. [PMID: 35497310 PMCID: PMC9042386 DOI: 10.1039/d1ra06086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer is initially treated via androgen deprivation therapy (ADT), a highly successful treatment in the initial pursuit of tumour regression, but commonly restricted by the eventual emergence of a more lethal ‘castrate resistant’ (CRPC) form of the disease. Intracrine pathways that utilize dehydroepiandrosterone (DHEA) or other circulatory precursor steroids are thought to generate relevant levels of growth-stimulating androgens such as testosterone (T) and dihydrotestosterone (DHT). Decoding this tissue-specific metabolic pathway is key for the development of novel therapeutic treatments. Mass spectrometry imaging (MSI) is an analytical technique that allows the visualization of the distribution of numerous classes of biomolecules within tissue sections. The analysis of androgens by liquid chromatography mass spectrometry (LC/MS)-based methods however presents a challenge due to their generally poor ionization efficiency and low physiological endogenous levels. In MSI, on-tissue chemical derivatization (OTCD) has enabled the limits of steroids to be imaged within tissues to be pushed by overcoming poor ionization performance. However, isobaric interference of key androgen derivatives such as T and DHEA can severely hamper studying the intracrinology in several diseases. Here, we have evaluated the use of laser induced post-ionization (MALDI-2) combined with trapped ion mobility separation (TIMS) and orthogonal time-of-flight (QTOF) MS for the visualization of isobaric derivatized androgens in murine tumour xenograft at about 50 μm spatial resolution. With this combination, isobaric T and DHEA were separated in tissue sections and the signals of derivatized steroids enhanced by about 20 times. The combination of TIMS and MALDI-2 thus shows unique potential to study tissue intracrinology within target tissues. This could offer the opportunity for many novel insights into tissue-specific androgen biology. We increase ionization efficiency and isobaric separation of derivatized androgens using MALDI-2-TIMS. First time spatial distribution of isobaric androgens is achieved in biological tissues by on-tissue chemical derivatization and MALDI-2-TIMS-MSI.![]()
Collapse
Affiliation(s)
- C. L. Logan Mackay
- SIRCAMS, EastChem School of Chemistry, University of Edinburgh, Scotland, UK
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Bram Heijs
- Mass Spectrometry Imaging Group, Leids Universitair Medisch Centrum, Leiden, The Netherlands
- Center for Proteomics & Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Karl W. Smith
- Mass Spectrometry Centre, Biomedical Science Research Institute (BMSRI), Ulster University, Coleraine, Northern Ireland, UK
| | - Faye L. Cruickshank
- SIRCAMS, EastChem School of Chemistry, University of Edinburgh, Scotland, UK
| | | | | | - Diego Cobice
- Mass Spectrometry Centre, Biomedical Science Research Institute (BMSRI), Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
13
|
Smith KW, Flinders B, Thompson PD, Cruickshank FL, Mackay CL, Heeren RMA, Cobice DF. Spatial Localization of Vitamin D Metabolites in Mouse Kidney by Mass Spectrometry Imaging. ACS OMEGA 2020; 5:13430-13437. [PMID: 32548531 PMCID: PMC7288721 DOI: 10.1021/acsomega.0c01697] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
Vitamin D plays a key role in the maintenance of calcium/phosphate homeostasis and elicits biological effects that are relevant to immune function and metabolism. It is predominantly formed through UV exposure in the skin by conversion of 7-dehydrocholsterol (vitamin D3). The clinical biomarker, 25-hydroxyvitamin D (25-(OH)-D), is enzymatically generated in the liver with the active hormone 1,25-dihydroxyvitamin D then formed under classical endocrine control in the kidney. Vitamin D metabolites are measured in biomatrices by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In LC-MS/MS, chemical derivatization (CD) approaches have been employed to achieve the desired limit of quantitation. Recently, matrix-assisted laser desorption/ionization (MALDI) has also been reported as an alternative method. However, these quantitative approaches do not offer any spatial information. Mass spectrometry imaging (MSI) has been proven to be a powerful tool to image the spatial distribution of molecules from the surface of biological tissue sections. On-tissue chemical derivatization (OTCD) enables MSI to image molecules with poor ionization efficiently. In this technical report, several derivatization reagents and OTCD methods were evaluated using different MSI ionization techniques. Here, a method for detection and spatial distribution of vitamin D metabolites in murine kidney tissue sections using an OTCD-MALDI-MSI platform is presented. Moreover, the suitability of using the Bruker ImagePrep for OTCD-based platforms has been demonstrated. Importantly, this method opens the door for expanding the range of other poor ionizable molecules that can be studied by OTCD-MSI by adapting existing CD methods.
Collapse
Affiliation(s)
- Karl W. Smith
- Mass
Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI),
School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, U.K.
- The
Nutrition Innovation Centre for Food and Health (NICHE), Biomedical
Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, U.K.
| | - Bryn Flinders
- Dutch
Screening Group, Gaetano
Martinolaan 63-65, Maastricht, 6229 GS, The Netherlands
| | - Paul D. Thompson
- The
Nutrition Innovation Centre for Food and Health (NICHE), Biomedical
Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, U.K.
| | - Faye L. Cruickshank
- Scottish
Instrumentation and Research Centre for Advanced Mass Spectrometry
(SIRCAMS), EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - C. Logan Mackay
- Scottish
Instrumentation and Research Centre for Advanced Mass Spectrometry
(SIRCAMS), EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Ron M. A. Heeren
- Maastricht
Multimodal Molecular Imaging Institute (M4I), University of Maastricht, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Diego F. Cobice
- Mass
Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI),
School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, U.K.
- . Phone: +442892604456
| |
Collapse
|
14
|
Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S A 2020; 117:5749-5760. [PMID: 32132201 PMCID: PMC7084107 DOI: 10.1073/pnas.1917421117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions; however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry platform to reveal spatial cholesterol metabolism in situ at 400-µm spot diameter on 10-µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24S-hydroxylase (CYP46A1), the major cholesterol metabolizing enzyme. Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.
Collapse
|
15
|
Nakamura M, Moritsuna M, Yuda K, Fujimura S, Sugiura Y, Shimma S, Nishimoto K, Nishikawa T, Suematsu M, Ogawa S, Higashi T. Quantitative MALDI-MS/MS assay for serum cortisol through charged derivatization. J Pharm Biomed Anal 2020; 178:112912. [DOI: 10.1016/j.jpba.2019.112912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
|
16
|
Maynard J, Hart P. The Opportunities and Use of Imaging to Measure Target Engagement. SLAS DISCOVERY 2019; 25:127-136. [PMID: 31885303 DOI: 10.1177/2472555219897270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lack of efficacy and poor safety outcomes are deemed to be the greatest causes of clinical failure of novel therapeutics. The use of biomarkers that give accurate information on target engagement, providing confidence that pharmacological activity in the target organ is being achieved, is key in optimizing clinical success. Without a measurement of target engagement, it can be very difficult to discern the basis for any lack of efficacy of a drug molecule within the pharmaceutical industry. Target engagement can be measured in both an in vitro and in vivo setting, and in recent years imaging measurements have been used frequently in drug discovery and development to assess target engagement and receptor occupancy in both human and animal models. From this perspective, we assess and look at the advancements in both in vivo and ex vivo imaging to demonstrate the enormous potential that imaging has as an application to provide a greater understanding of target engagement with a correlative therapeutic impact.
Collapse
Affiliation(s)
| | - Philippa Hart
- Medicines Discovery Catapult, Alderley Park, Cheshire, UK
| |
Collapse
|
17
|
Smith KW, Thompson PD, Rodriguez EP, Mackay L, Cobice DF. Effects of vitamin D as a regulator of androgen intracrinology in LNCAP prostate cancer cells. Biochem Biophys Res Commun 2019; 519:579-584. [PMID: 31537382 DOI: 10.1016/j.bbrc.2019.09.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/14/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer is initially treated via androgen deprivation therapy (ADT), a highly successful treatment in the initial pursuit of tumor regression, but commonly restricted by the eventual emergence of a more lethal 'castrate resistant' form of the disease. Intracrine pathways that utilize dehydroepiandrosterone (DHEA) or other circulatory precursor steroids, are thought to generate relevant levels of growth-stimulating androgens such as testosterone (T) and dihydrotestosterone (DHT). In this study, we explored the capacity of the active vitamin D hormone to interact and elicit changes upon this prostatic intracrine pathway at a metabolic level. We used androgen dependent LNCaP cells cultured under steroid-depleted conditions and assessed the impact of vitamin D-based compounds upon intracrine pathways that convert exogenously added DHEA to relevant metabolites, through Mass Spectrometry (MS). Changes in relevant metabolism-related gene targets were also assessed. Our findings confirm that exposure to vitamin D based compounds, within LNCaP cells, elicits measurable and significant reduction in the intracrine conversion of DHEA to T, DHT and other intermediate metabolites within the androgenic pathway. The aassessment and validation of the biological model and analytical platforms were performed by pharmacological manipulations of the SRD5α and HSD-17β enzymes. The data provides further confirmation for how a vitamin D-based regime may be used to counter intracrine mechanisms contributing to the emergence of castrate-resistant tumors.
Collapse
Affiliation(s)
- Karl W Smith
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK; The Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Paul D Thompson
- The Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Edna Patricia Rodriguez
- The Nutrition Innovation Centre for Food and Health (NICHE), Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EastChem School of Chemistry, University of Edinburgh, Scotland, UK
| | - Diego F Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
18
|
Panizzon MS, Hauger RL, Xian H, Jacobson K, Lyons MJ, Franz CE, Kremen WS. Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men. Psychoneuroendocrinology 2018; 91:115-122. [PMID: 29547742 PMCID: PMC5931212 DOI: 10.1016/j.psyneuen.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
Abstract
Animal and human research suggests that testosterone is associated with hippocampal structure and function. Studies examining the association between testosterone and either hippocampal structure or hippocampal-mediated cognitive processes have overwhelmingly focused on the effects of testosterone alone, without considering the interaction of other neuroendocrine factors. The aim of the present study was to examine the interactive effects of testosterone and cortisol in relation to hippocampal volume and episodic memory in a sample of late-middle aged men from the Vietnam Era Twin Study of Aging. The average age of participants was 56.3 years (range 51-60). Salivary hormone samples were collected at multiple time-points on two non-consecutive at-home days, and an in-lab assessment. Area under the curve with respect to ground measures for cortisol and testosterone were utilized. Significant testosterone-by-cortisol interactions were observed for hippocampal volume, and episodic memory. When cortisol levels were elevated (1 SD above the mean), testosterone levels were positively associated with hippocampal volume and memory performance. However, when cortisol levels were low (1 SD below the mean), testosterone levels were inversely related to hippocampal volume and memory performance. These findings suggest that in context of high cortisol levels, testosterone may be neuroprotective. In contrast, low testosterone may also be neuroprotective in the context of low cortisol levels. To our knowledge this is the first demonstration of such an interaction in a structural brain measure and an associated cognitive ability. These results argue in favor of broadening neuroendocrine research to consider the simultaneous and interactive effects of multiple hormones on brain structure and function.
Collapse
Affiliation(s)
- Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA,Correspondence: Dr. Matthew S. Panizzon, Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (MC 0738), La Jolla, CA 9293-0738; Tel: 858-534-8269; Fax: 858-822-5856;
| | - Richard L. Hauger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
| | - Hong Xian
- Department of Biostatistics, St. Louis University, College for Public Health & Social Justice, St. Louis, MO,Research Service, St. Louis Veterans Affairs Medical Center, St. Louis, MO
| | | | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|