1
|
Hui Z, Deng H, Zhang X, Garrido C, Lirussi F, Ye XY, Xie T, Liu ZQ. Development and therapeutic potential of DNA-dependent protein kinase inhibitors. Bioorg Chem 2024; 150:107608. [PMID: 38981210 DOI: 10.1016/j.bioorg.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
Collapse
Affiliation(s)
- Zi Hui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Carmen Garrido
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Faculté de médecine, Université de Bourgogne, Dijon, Centre de lutte contre le cancer Georges François Leclerc, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Université de Franche Comté, France, University Hospital of Besançon (CHU), France
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China.
| |
Collapse
|
2
|
Waldrip ZJ, Acharya B, Armstrong D, Hanafi M, Rainwater RR, Amole S, Fulmer M, Azevedo-Pouly AC, Burns A, Burdine L, Frett B, Burdine MS. Discovery of the DNA-PKcs inhibitor DA-143 which exhibits enhanced solubility relative to NU7441. Sci Rep 2024; 14:19999. [PMID: 39198533 PMCID: PMC11358143 DOI: 10.1038/s41598-024-70858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a vital role in DNA damage repair and lymphocyte function, presenting a significant target in cancer and immune diseases. Current DNA-PKcs inhibitors are undergoing Phase I/II trials as adjuncts to radiotherapy and chemotherapy in cancer. Nevertheless, clinical utility is limited by suboptimal bioavailability. This study introduces DNA-PKcs inhibitors designed to enhance bioavailability. We demonstrate that a novel DNA-PKcs inhibitor, DA-143, surpasses NU7441 in aqueous solubility as well as other available inhibitors. In addition, DA-143 displayed an improvement in DNA-PKcs inhibition relative to NU7441 achieving an IC50 of 2.5 nM. Consistent with current inhibitors, inhibition of DNA-PKcs by DA-143 resulted in increased tumor cell sensitivity to DNA-damage from chemotherapy and inhibition of human T cell function. The improved solubility of DA-143 is critical for enhanced efficacy at reduced doses and facilitates more effective evaluation of DNA-PKcs inhibition in both preclinical and clinical development.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Baku Acharya
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Daniel Armstrong
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Maha Hanafi
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11526, Egypt
| | - Randall R Rainwater
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Sharon Amole
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Madeline Fulmer
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ana Clara Azevedo-Pouly
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
| | - Alaina Burns
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lyle Burdine
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Transplant Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brendan Frett
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Marie Schluterman Burdine
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA.
| |
Collapse
|
3
|
Liu K, Yuan X, Yang T, Deng D, Chen Y, Tang M, Zhang C, Zou Y, Zhang S, Li D, Shi M, Guo Y, Zhou Y, Zhao M, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Potent and Selective DNA-PK Inhibitors in Combination with Chemotherapy or Radiotherapy for the Treatment of Malignancies. J Med Chem 2024; 67:245-271. [PMID: 38117951 DOI: 10.1021/acs.jmedchem.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shunjie Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
4
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
5
|
Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4127. [PMID: 37627155 PMCID: PMC10453198 DOI: 10.3390/cancers15164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Mukul Raj Gupta
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
6
|
Han J, Wan M, Ma Z, Yi H. Regulation of DNA-PK activity promotes the progression of TNBC via enhancing the immunosuppressive function of myeloid-derived suppressor cells. Cancer Med 2023; 12:5939-5952. [PMID: 36373232 PMCID: PMC10028116 DOI: 10.1002/cam4.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DNA-dependent protein kinase (DNA-PK) is engaged in DNA damage repair and is significantly expressed in triple negative breast cancer (TNBC). Inhibiting DNA-PK to reduce DNA damage repair provides a possibility of tumor treatment. NU7441, a DNA-PK inhibitor, can regulate the function and differentiation of CD4+ T cells and effectively enhance immunogenicity of monocyte-derived dendritic cells. However, the effect of NU7441 on the tumor progression activity of immunosuppressive myeloid-derived suppressor cells (MDSCs) in TNBC remains unclear. RESULTS In this study, we found that NU7441 alone significantly increased tumor growth in 4 T1 (a mouse TNBC cell line) tumor-bearing mice. Bioinformatics analysis showed that DNA-PK and functional markers of MDSCs (iNOS, Arg1, and IDO) tended to coexist in breast cancer patients. The mutations of these genes were significantly correlated with lower survival in breast cancer patients. Moreover, NU7441 significantly decreased the percentage of MDSCs in peripheral blood mononuclear cells (PBMCs), spleen and tumor, but enhanced the immunosuppressive function of splenic MDSCs. Furthermore, NU7441 increased MDSCs' DNA-PK and pDNA-PK protein levels in PBMCs and in the spleen and increased DNA-PK mRNA expression and expression of MDSCs functional markers in splenic MDSCs from tumor-bearing mice. NU7441 combined with gemcitabine reduced tumor volume, which may be because gemcitabine eliminated the remaining MDSCs with enhanced immunosuppressive ability. CONCLUSIONS These findings highlight that the regulation of DNA-PK activity by NU7441 promotes TNBC progression via enhancing the immunosuppressive function of MDSCs. Moreover, NU7441 combined with gemcitabine offers an efficient therapeutic approach for TNBC and merits deeper investigation.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| |
Collapse
|
7
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
8
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Berger M, Wortmann L, Buchgraber P, Lücking U, Zitzmann-Kolbe S, Wengner AM, Bader B, Bömer U, Briem H, Eis K, Rehwinkel H, Bartels F, Moosmayer D, Eberspächer U, Lienau P, Hammer S, Schatz CA, Wang Q, Wang Q, Mumberg D, Nising CF, Siemeister G. BAY-8400: A Novel Potent and Selective DNA-PK Inhibitor which Shows Synergistic Efficacy in Combination with Targeted Alpha Therapies. J Med Chem 2021; 64:12723-12737. [PMID: 34428039 DOI: 10.1021/acs.jmedchem.1c00762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.
Collapse
Affiliation(s)
- Markus Berger
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Lars Wortmann
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Philipp Buchgraber
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Ulrich Lücking
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | | | - Antje M Wengner
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Benjamin Bader
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Ulf Bömer
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Hans Briem
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Knut Eis
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Hartmut Rehwinkel
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Florian Bartels
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Dieter Moosmayer
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Uwe Eberspächer
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Philip Lienau
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Stefanie Hammer
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Christoph A Schatz
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Qiuwen Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Qi Wang
- WuXi AppTec (Wuhan) Co., Ltd., 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, P. R. China
| | - Dominik Mumberg
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Carl F Nising
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| | - Gerhard Siemeister
- Research & Development, Pharmaceuticals, Bayer AG, Berlin 13353, Germany
| |
Collapse
|
11
|
Taffoni C, Steer A, Marines J, Chamma H, Vila IK, Laguette N. Nucleic Acid Immunity and DNA Damage Response: New Friends and Old Foes. Front Immunol 2021; 12:660560. [PMID: 33981307 PMCID: PMC8109176 DOI: 10.3389/fimmu.2021.660560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.
Collapse
Affiliation(s)
- Clara Taffoni
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Alizée Steer
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Johanna Marines
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.,Azelead, Montpellier, France
| | - Hanane Chamma
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| |
Collapse
|
12
|
Hu S, Hui Z, Lirussi F, Garrido C, Ye XY, Xie T. Small molecule DNA-PK inhibitors as potential cancer therapy: a patent review (2010-present). Expert Opin Ther Pat 2021; 31:435-452. [PMID: 33347360 DOI: 10.1080/13543776.2021.1866540] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: DNA-dependent protein kinase (DNA-PK) plays a crucial role in the repair of DSBs via non-homologous end joining (NHEJ). Several DNA-PK inhibitors are being investigated for potential anticancer treatment in clinical trials.Area covered: This review aims to give an overview of patents published since 2010 by analyzing the patent space and structure features of scaffolds used in those patents. It also discusses the recent clinical developments and provides perspectives on future challenges and directions in this field.Expert opinion: As a key component of the DNA damage response (DDR) pathway, DNA-PK appears to be a viable drug target for anticancer therapy. The clinical investigation of a DNA-PK inhibitor employs both a monotherapy and a combination strategy. In the combination strategy, a DNA-PK inhibitor is typically combined with a DSB inducer, radiation, a chemotherapy agent, or a PARP inhibitor, etc. Patent analyses suggest that diverse structures comprising different scaffolds from mono-heteroaryl to bicyclic heteroaryl to tricyclic heteroaryl are capable to achieve good DNA-PK inhibitory activity and good DNA-PK selectivity over other closely related enzymes. Several DNA-PK inhibitors are currently being evaluated in clinics, with the hope to get approval in the near future.
Collapse
Affiliation(s)
- Suwen Hu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;dKey Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.,;eHangzhou Huadong Medicine Group, Pharmaceutical Research Institute Co. Ltd, Hanzhou City, Zhejiang Province, People's Republic of China
| | - Zi Hui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Frédéric Lirussi
- ;fINSERM, U1231, Label LipSTIC, and Ligue Nationale Contre Le Cancer, Dijon, France.,;gUniversité De Bourgogne-Franche Comté, I-SITE, France.,;hDepartment of Pharmacology-Toxicology & Metabolomics, University hospital of Besançon (CHU), 2 Boulevard Fleming, 25030 BESANCON, France
| | - Carmen Garrido
- ;INSERM, U1231, Label LipSTIC, and Ligue Nationale Contre Le Cancer, Dijon, France.,;Université De Bourgogne-Franche Comté, I-SITE, France.,;iAnti-cancer Center George-François Leclerc, CGFL, Dijon, France
| | - Xiang-Yang Ye
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, Zhejiang, People's Republic of China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Zhejiang Province, People's Republic of China.,;cCollaborative Innovation Center of Chinese Medicines from Zhejiang Province, Zhejiang Province, People's Republic of China.,;Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Abstract
Cancer cells die when their decimated DNA damage response (DDR) unsuccessfully handles DNA damage. This notion has been successfully exploited when targeting PARP (poly ADP-ribose polymerase) in homologous recombination-deficient cells. With the greater understanding of DDR achieved in the last decade, new cancer therapy targets within the DDR network have been identified. Intriguingly, many of the molecules that have advanced into clinical trials are inhibitors of DDR kinases. This special issue is devoted to discussing the mechanism of cell killing and the level of success that such inhibitors have reached in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires. Consejo de Investigaciones Científicas y Técnicas. Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
15
|
Abstract
DNA-dependent protein kinase (DNA-PK) is involved in many cellular pathways. It has a key role in the cellular response to DNA damage, in the repair of DNA double-strand break (DNA-DSBs) and as a consequence an important role in maintaining genomic integrity. In addition, DNA-PK has been shown to modulate transcription, to be involved in the development of the immune system and to protect telomeres. These pleotropic involvements and the fact that its expression is de-regulated in cancer have made DNA-PK an intriguing therapeutic target in cancer therapy, especially when combined with agents causing DNA-DSBs such as topoisomerase II inhibitors and ionizing radiation. Different small molecule inhibitors of DNA-PK have been recently synthesized and some are now being tested in clinical trials. This review discusses what is known about DNA-PK, its role in tumor biology, DNA repair and cancer therapy and critically discusses its inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| |
Collapse
|
16
|
Knyazhanskaya E, Anisenko A, Shadrina O, Kalinina A, Zatsepin T, Zalevsky A, Mazurov D, Gottikh M. NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase. Retrovirology 2019; 16:30. [PMID: 31690330 PMCID: PMC6833283 DOI: 10.1186/s12977-019-0492-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV-1 integration results in genomic DNA gaps that are repaired by cellular DNA repair pathways. This step of the lentiviral life cycle remains poorly understood despite its crucial importance for successful replication. We and others reported that Ku70 protein of the non-homologous end joining pathway (NHEJ) directly binds HIV-1 integrase (IN). Here, we studied the importance of this interaction for post-integrational gap repair and the recruitment of NHEJ factors in this process. Results We engineered HIV-based pseudovirus with mutant IN defective in Ku70 binding and generated heterozygous Ku70, Ku80 and DNA-PKcs human knockout (KO) cells using CRISPR/Cas9. KO of either of these proteins or inhibition of DNA-PKcs catalytic activity substantially decreased the infectivity of HIV-1 with native IN but not with the mutant one. We used a recently developed qPCR assay for the measurement of gap repair efficiency to show that HIV-1 with mutant IN was defective in DNA post-integrational repair, whereas the wild type virus displayed such a defect only when NHEJ system was disrupted in any way. This effect was present in CRISPR/Cas9 modified 293T cells, in Jurkat and CEM lymphoid lines and in primary human PBMCs. Conclusions Our data provide evidence that IN recruits DNA-PK to the site of HIV-1 post-integrational repair due to Ku70 binding—a novel finding that explains the involvement of DNA-PK despite the absence of free double stranded DNA breaks. In addition, our data clearly indicate the importance of interactions between HIV-1 IN and Ku70 in HIV-1 replication at the post-integrational repair step.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Olga Shadrina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia Kalinina
- Federal State Budgetary Institution « N.N. Blokhin National Medical Research Center of Oncology » of the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia
| | - Arthur Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, RAS, Moscow, 119334, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, 115478, Russia
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
17
|
HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing. Sci Rep 2019; 9:13154. [PMID: 31511615 PMCID: PMC6739472 DOI: 10.1038/s41598-019-48689-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mammals have evolved many antiviral factors impacting different steps of the viral life cycle. Associated with chromatin-modifying enzymes, the cellular cofactor CTIP2 contributes to HIV-1 gene silencing in latently infected reservoirs that constitute the major block toward an HIV cure. We report, for the first time, that the virus has developed a strategy to overcome this major transcriptional block. Productive HIV-1 infection results in a Vpr-mediated depletion of CTIP2 in microglial cells and CD4+ T cells, two of the major viral reservoirs. Associated to the Cul4A-DDB1-DCAF1 ubiquitin ligase complex, Vpr promotes CTIP2 degradation via the proteasome pathway in the nuclei of target cells and notably at the latent HIV-1 promoter. Importantly, Vpr targets CTIP2 associated with heterochromatin-promoting enzymes dedicated to HIV-1 gene silencing. Thereby, Vpr reactivates HIV-1 expression in a microglial model of HIV-1 latency. Altogether our results suggest that HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing.
Collapse
|