1
|
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol 2023; 11:1297292. [PMID: 38169775 PMCID: PMC10758423 DOI: 10.3389/fcell.2023.1297292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Serine/Threonine protein kinase family, p90 ribosomal S6 kinases (RSK) are downstream effectors of extracellular signal regulated kinase 1/2 (ERK1/2) and are activated in response to tyrosine kinase receptor or G-protein coupled receptor signaling. RSK contains two distinct kinase domains, an N-terminal kinase (NTKD) and a C-terminal kinase (CTKD). The sole function of the CTKD is to aid in the activation of the NTKD, which is responsible for substrate phosphorylation. RSK regulates various homeostatic processes including those involved in transcription, translation and ribosome biogenesis, proliferation and survival, cytoskeleton, nutrient sensing, excitation and inflammation. RSK also acts as a major negative regulator of ERK1/2 signaling. RSK is associated with numerous cancers and has been primarily studied in the context of transformation and metastasis. The development of specific RSK inhibitors as cancer therapeutics has lagged behind that of other members of the mitogen-activated protein kinase signaling pathway. Importantly, a pan-RSK inhibitor, PMD-026, is currently in phase I/1b clinical trials for metastatic breast cancer. However, there are four members of the RSK family, which have overlapping and distinct functions that can vary in a tissue specific manner. Thus, a problem for transitioning a RSK inhibitor to the clinic may be the necessity to develop isoform specific inhibitors, which will be challenging as the NTKDs are very similar to each other. CTKD inhibitors have limited use as therapeutics as they are not able to inhibit the activity of the NTKD but could be used in the development of proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Eric B. Wright
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Deborah A. Lannigan
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department Pathology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Fratta E, Giurato G, Guerrieri R, Colizzi F, Dal Col J, Weisz A, Steffan A, Montico B. Autophagy in BRAF-mutant cutaneous melanoma: recent advances and therapeutic perspective. Cell Death Discov 2023; 9:202. [PMID: 37386023 DOI: 10.1038/s41420-023-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, represents a highly conserved catabolic process that maintains cellular homeostasis. At present, the role of autophagy in cutaneous melanoma (CM) is still controversial, since it appears to be tumor-suppressive at early stages of malignant transformation and cancer-promoting during disease progression. Interestingly, autophagy has been found to be often increased in CM harboring BRAF mutation and to impair the response to targeted therapy. In addition to autophagy, numerous studies have recently conducted in cancer to elucidate the molecular mechanisms of mitophagy, a selective form of mitochondria autophagy, and secretory autophagy, a process that facilitates unconventional cellular secretion. Although several aspects of mitophagy and secretory autophagy have been investigated in depth, their involvement in BRAF-mutant CM biology has only recently emerged. In this review, we aim to overview autophagy dysregulation in BRAF-mutant CM, along with the therapeutic advantages that may arise from combining autophagy inhibitors with targeted therapy. In addition, the recent advances on mitophagy and secretory autophagy involvement in BRAF-mutant CM will be also discussed. Finally, since a number of autophagy-related non-coding RNAs (ncRNAs) have been identified so far, we will briefly discussed recent advances linking ncRNAs to autophagy regulation in BRAF-mutant CM.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, 84131, Salerno, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
3
|
Koutsougianni F, Alexopoulou D, Uvez A, Lamprianidou A, Sereti E, Tsimplouli C, Ilkay Armutak E, Dimas K. P90 ribosomal S6 kinases: A bona fide target for novel targeted anticancer therapies? Biochem Pharmacol 2023; 210:115488. [PMID: 36889445 DOI: 10.1016/j.bcp.2023.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases. They are downstream effectors of the Ras/ERK/MAPK signaling cascade. ERK1/2 activation directly results in the phosphorylation of RSKs, which further, through interaction with a variety of different downstream substrates, activate various signaling events. In this context, they have been shown to mediate diverse cellular processes like cell survival, growth, proliferation, EMT, invasion, and metastasis. Interestingly, increased expression of RSKs has also been demonstrated in various cancers, such as breast, prostate, and lung cancer. This review aims to present the most recent advances in the field of RSK signaling that have occurred, such as biological insights, function, and mechanisms associated with carcinogenesis. We additionally present and discuss the recent advances but also the limitations in the development of pharmacological inhibitors of RSKs, in the context of the use of these kinases as putative, more efficient targets for novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Fani Koutsougianni
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Dimitra Alexopoulou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Ayca Uvez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Andromachi Lamprianidou
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Evangelia Sereti
- Dept of Translational Medicine, Medical Faculty, Lund University and Center for Molecular Pathology, Skäne University Hospital, Jan Waldenströms gata 59, SE 205 02 Malmö, Sweden
| | - Chrisiida Tsimplouli
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, Health Sciences School, University of Thessaly, Larissa, Greece.
| |
Collapse
|
4
|
Lucia Ruiz Benitez M, Severo Sabedra Sousa F, Peter Furtado I, Carlos Rodrigues Junior J, Victoria Mascarenhas Borba M, Vieira Segatto N, Tabarelli G, Klein Couto G, Júlia Damé Fonseca Paschoal M, Silveira Pacheco B, E. D. Rodrigues O, Collares T, Kömmling Seixas F. Chiral β‐arylchalcogenium azide induce apoptosis and regulate Oxidative Damage on Human Bladder Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202203207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- School of Basic and Biomedical Sciences Universidad Simón Bolívar Barranquilla Colombia
| | - Fernanda Severo Sabedra Sousa
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Izadora Peter Furtado
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - João Carlos Rodrigues Junior
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Msc. Victoria Mascarenhas Borba
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Natália Vieira Segatto
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Greice Tabarelli
- LabSelen-NanoBio - Chemistry Department Federal University of Santa Maria, Santa Maria Rio Grande do Sul Brazil
| | - Gabriela Klein Couto
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Msc. Júlia Damé Fonseca Paschoal
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Bruna Silveira Pacheco
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Chemistry Department Federal University of Santa Maria, Santa Maria Rio Grande do Sul Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
5
|
Wu HZ, Li LY, Jiang SL, Li YZ, Shi XM, Sun XY, Li Z, Cheng Y. RSK2 promotes melanoma cell proliferation and vemurafenib resistance via upregulating cyclin D1. Front Pharmacol 2022; 13:950571. [PMID: 36210843 PMCID: PMC9541206 DOI: 10.3389/fphar.2022.950571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
BRAF inhibitors are commonly used in targeted therapies for melanoma patients harboring BRAFV600E mutant. Despite the benefit of vemurafenib therapy, acquired resistance during or after treatment remains a major obstacle in BRAFV600E mutant melanoma. Here we found that RSK2 is overexpressed in melanoma cells and the high expression of RSK2 indicates poor overall survival (OS) in melanoma patients. Overexpression of RSK2 leads to vemurafenib resistance, and the deletion of RSK2 inhibits cell proliferation and sensitizes melanoma cells to vemurafenib. Mechanistically, RSK2 enhances the phosphorylation of FOXO1 by interacting with FOXO1 and promoting its subsequent degradation, leading to upregulation of cyclin D1 in melanoma cells. These results not only reveal the presence of a RSK2-FOXO1-cyclin D1 signaling pathway in melanoma, but also provide a potential therapeutic strategy to enhance the efficacy of vemurafenib against cancer.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shi-Long Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Zhi Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Xiao-Mei Shi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xin-Yuan Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhuo Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Zhuo Li,
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- *Correspondence: Yan Cheng, ; Zhuo Li,
| |
Collapse
|
6
|
Zhang X, Guo Y, Xiao T, Li J, Guo A, Lei L, Jin C, Long Q, Su J, Yin M, Liu H, Chen C, Zhou Z, Zhu S, Tao J, Hu S, Chen X, Peng C. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J Exp Clin Cancer Res 2022; 41:246. [PMID: 35964097 PMCID: PMC9375950 DOI: 10.1186/s13046-022-02427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malignant transformation of the epidermis is an essential process in the pathogenesis of cutaneous squamous-cell carcinoma (cSCC). Although evidence has demonstrated that CD147 plays key roles in various tumors, the role of CD147 in epidermal malignant transformation in vivo remains unclear.
Methods
Epidermal CD147-overexpression or knockout (EpiCD147-OE or EpiCD147-KO) transgenic mouse models were generated for in vivo study. RNA-sequencing and q-PCR were performed to identify the differentially expressed genes. Immunohistochemistry and flow cytometry were performed to investigate the role of CD147 in regulating myeloid-derived suppressor cells (MDSCs). Immunoprecipitation, EMSA and ChIP assays were performed to investigate the mechanism of CD147 in cell transformation.
Results
We found that specific overexpression of CD147 in the epidermis (EpiCD147-OE) induces spontaneous tumor formation; moreover, a set of chemokines and cytokines including CXCL1, which play essential function in MDSC recruitment, were significantly upregulated in EpiCD147-OE transgenic mice. As expected, overexpression of CD147 in the epidermis remarkably facilitated tumorigenesis by increasing the rate of tumor initiation and the number and size of tumors in the DMBA/TPA mouse model. Interestingly, the expression of CXCL1 and the infiltration of MDSCs were dramatically increased in EpiCD147-OE transgenic mice. Our findings also showed that knockdown of CD147 attenuated EGF-induced malignant transformation as well as CXCL1 expression in HaCaT cells. Consistently, CD147 was found overexpressed in cutaneous squamous cell carcinoma (cSCC), and positively related with the expression of CD33, a myeloid-associated marker. We further identified RSK2, a serine/threonine kinase, as an interacting partner of CD147 at the binding site of CD147D207-230. The interaction of CD147 and RSK2 activated RSK2, thus enhancing AP-1 transcriptional activation. Furthermore, EMSAs and ChIP assays showed that AP-1 could associate with the CXCL1 promoter. Importantly, RSK2 inhibitor suppressed the tumor growth in DMBA/TPA mouse model by inhibiting the recruitment of MDSCs.
Conclusion
Our findings demonstrate that CD147 exerts a key function in epidermal malignant transformation in vivo by activating keratinocytes and recruiting MDSCs via the RSK2/AP-1 pathway.
Collapse
|
7
|
Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. P-Rex1 Signaling Hub in Lower Grade Glioma Patients, Found by In Silico Data Mining, Correlates With Reduced Survival and Augmented Immune Tumor Microenvironment. Front Oncol 2022; 12:922025. [PMID: 35875157 PMCID: PMC9300953 DOI: 10.3389/fonc.2022.922025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Systematic analysis of tumor transcriptomes, combined with deep genome sequencing and detailed clinical assessment of hundreds of patients, constitutes a powerful strategy aimed to identify potential biomarkers and therapeutic targets to guide personalized treatments. Oncogenic signaling cascades are integrated by multidomain effector proteins such as P-Rex1, a guanine nucleotide exchange factor for the Rac GTPase (RacGEF), known to promote metastatic dissemination of cancer cells. We hypothesized that patients with high P-Rex1 expression and reduced survival might be characterized by a particular set of signaling proteins co-expressed with this effector of cell migration as a central component of a putative signaling hub indicative of poor prognosis. High P-Rex1 expression correlated with reduced survival of TCGA Lower Grade Glioma (LGG) patients. Thus, guided by PREX1 expression, we searched for signaling partners of this RacGEF by applying a systematic unbiased in silico data mining strategy. We identified 30 putative signaling partners that also correlated with reduced patient survival. These included GPCRs such as CXCR3, GPR82, FZD6, as well as MAP3K1, MAP2K3, NEK8, DYRK3 and RPS6KA3 kinases, and PTPN2 and PTPN22 phosphatases, among other transcripts of signaling proteins and phospho-substrates. This PREX1 signaling hub signature correlated with increased risk of shorter survival of LGG patients from independent datasets and coincided with immune and endothelial transcriptomic signatures, indicating that myeloid infiltration and tumor angiogenesis might contribute to worsen brain tumor pathology. In conclusion, P-Rex1 and its putative signaling partners in LGG are indicative of a signaling landscape of the tumor microenvironment that correlates with poor prognosis and might guide the characterization of signaling targets leading the eventual development of immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
- *Correspondence: José Vázquez-Prado,
| |
Collapse
|
8
|
Screening of Autophagy-Related Prognostic Genes in Metastatic Skin Melanoma. DISEASE MARKERS 2022; 2022:8556593. [PMID: 35069935 PMCID: PMC8776460 DOI: 10.1155/2022/8556593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Cutaneous melanoma refers to a common skin tumor that is dangerous to health with a great risk of metastasis. Previous researches reported that autophagy is associated with the progression of cutaneous melanoma. Nevertheless, the role played by genes with a relation to autophagy (ARG) in the prediction of the course of metastatic cutaneous melanoma is still largely unknown. We observed that thirteen ARGs showed relations to overall survival (OS) in the Cox regression investigation based on a single variate. We developed 2-gene signature, which stratified metastatic cutaneous melanoma cases to groups at great and small risks. Cases suffering from metastatic cutaneous melanoma in the group at great risks had power OS compared with cases at small risks. The risk score, T phase, N phase, and age were proved to be individual factors in terms of the prediction of OS. Besides, the risk scores identified by the two ARGs were significantly correlated with metastatic cutaneous melanoma. Receiver operating characteristic (ROC) curve analysis demonstrated accurate predicting performance exhibited by the 2-gene signature. We also found that the immunization and stromal scores achieved by the group based on large risks were higher compared with those achieved by the group based on small risks. The metastatic cutaneous melanoma cases achieving the score based on small risks acquired greater expression of immune checkpoint molecules as compared with the high-risk group. In conclusion, the 2-ARG gene signature indicated a novel prognostic indicator for prognosis prediction of metastatic cutaneous melanoma, which served as an important tool for guiding the clinical treatment of cutaneous melanoma.
Collapse
|
9
|
Tang L, Long J, Li K, Zhang X, Chen X, Peng C. A novel chalcone derivative suppresses melanoma cell growth through targeting Fyn/Stat3 pathway. Cancer Cell Int 2020; 20:256. [PMID: 32565740 PMCID: PMC7302361 DOI: 10.1186/s12935-020-01336-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Fyn has been documented to have oncogenic features in multiple tumors, which might be a potential therapeutic target, however, few studies on the function role of Fyn and its specific inhibitors in melanoma. Methods We investigated the impacts of Fyn and its inhibitor Lj-1-60 on melanoma through bioinformatics analysis, western blot, cell viability, cell cycle and apoptosis and xenograft tumor model as well as immunohistochemical staining. Pull-down and in vitro kinase assay were used to demonstrate Lj-1-60 targeting Fyn. Transcriptome sequencing and RT-PCR were adopted to confirm the potential mechanisms of Lj-1-60 in melanoma. Results Our findings showed that Fyn was overexpressed in melanoma cells and knocked down of Fyn suppressed the proliferation of melanoma cells. To identify the potential inhibitors of Fyn, our in-house library including total of 111,277 chemicals was conducted to vitro screening, among those compounds, 83 inhibitors were further detected to explore the effect on melanoma cells growth and discovered a novel chalcone derivative Lj-1-60 that exhibited low cellular toxicity and high anti-tumor efficacy. Lj-1-60 directly was associated with Fyn and inhibited the Fyn kinase activity with Stat3 as substrate. What's more, Lj-1-60 suppressed the proliferation of melanoma in vitro and in vivo through inducing cell cycle arrest and apoptosis. Moreover, the activation of Stat3 had also been abrogated both in Lj-1-60 treated melanoma cells or Fyn knocked down cells. Conclusion Our study revealed a novel Fyn inhibitor that could significantly suppress melanoma growth, which is a promising potential inhibitor for melanoma treatment.
Collapse
Affiliation(s)
- Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jing Long
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Keke Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000 Hunan China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
10
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|