1
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Cheng Y, Li J, Feng X, Wu Y, Wu X, Lau BWM, Ng SSM, Lee SMY, Seto SW, Leung GPH, Hu Y, Fu C, Zhang S, Zhang J. Taohong Siwu decoction enhances the chemotherapeutic efficacy of doxorubicin by promoting tumor vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155995. [PMID: 39270591 DOI: 10.1016/j.phymed.2024.155995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Instead of completely suppressing blood vessels inside tumors, vascular normalization therapy is proposed to normalize and prune the abnormal vasculature in tumor microenvironment (TME) to acquire a normal and stable blood flow and perfusion. The theoretical basis for the use of "blood-activating and stasis-resolving" formulas in Traditional Chinese Medicine to treat cancer is highly consistent with the principle of vascular normalization therapy, suggesting the potential application of these traditional formulas in vascular normalization therapy. PURPOSE To study the underlying mechanisms of a classical "blood-activating and stasis-resolving" formula, Taohong Siwu decoction (TSD), in enhancing the efficacy of chemotherapy for breast cancer treatment. STUDY DESIGN HUVECs and transgenic zebrafish embryos were used as the major model in vitro. A 4T1 mouse breast cancer model was applied to study tumor vasculature normalization of TSD and the combination effects with DOX. RESULTS Our data showed that TSD exhibited anti-angiogenic potential in HUVECs and transgenic zebrafish embryos. After 20 days treatment, TSD significantly normalized the tumor vasculature by remodeling vessel structure, reducing intratumoral hypoxia and vessel leakage, and promoting vessel maturation and blood perfusion in 4T1 breast tumor-bearing mice. Moreover, the anti-tumor efficacy of doxorubicin liposome in 4T1 breast tumors was significantly improved by TSD, including the suppression of tumor cell proliferation, angiogenesis, hypoxia, and the increase of cell apoptosis, which is likely through the vascular normalization induced by TSD. TSD also shifted the macrophage polarization from M2 to M1 phenotype in TME during the combination therapy, as evidenced by the reduced number of CD206+ macrophages and increased number of CD86+ macrophages. Additionally, TSD treatment protected against doxorubicin-induced cardiotoxicity in animals, as evidenced by the reduced cardiomyocytes apoptosis and improved heart function. CONCLUSION This study demonstrated for the first time that TSD as a classical Chinese formula can enhance the drug efficacy and reduce the side effects of doxorubicin. These findings can support that TSD could be used as an adjuvant therapy in combination with conventional chemotherapy for the future breast cancer treatment.
Collapse
Affiliation(s)
- Yanfen Cheng
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), University of Chengdu, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China.
| | - Xi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Shamay Sheung Mei Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Simon Ming-Yuen Lee
- The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Sai-Wang Seto
- The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Yichen Hu
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), University of Chengdu, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Siyuan Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China.
| |
Collapse
|
3
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Li L, Su Z, He Y, Zhong X, Fu C, Zou L, Li J, Zhang J. Physicochemical characterization and anti-angiogenesis activity of polysaccharides from Amauroderma rugosum, a medicinal and edible mushroom. Int J Biol Macromol 2024; 274:133478. [PMID: 38942412 DOI: 10.1016/j.ijbiomac.2024.133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Amauroderma rugosum (AR) is commonly recognized as a medicinal fungus, often used as an alternative to Ganoderma lucidum. There is a scarcity of comprehensive and in-depth research on its bioactive polysaccharides and their associated biological activities. Herein, we isolated the polysaccharide fractions extracted from AR (ARPs) and investigated their primary structure and anti-angiogenic activities, given that various diseases are associated with excessive angiogenesis. Four polysaccharide fractions including ARP-0, ARP-1, ARP-2, and ARP-5 were heteropolysaccharides with different molecular weights, monosaccharide compositions, and micromorphologies, highlighting their varying bioactive profiles. Treatment of human umbilical vein endothelial cells with these polysaccharide fractions showed that only ARP-5 inhibited cell proliferation after vascular endothelial growth factor (VEGF) stimulation. Similarly, ARP-5 inhibited human umbilical vein endothelial cells migration, invasion, and tube formation upon VEGF (50 ng/mL) treatment. Moreover, compared with the insignificant effects of ARP-0, ARP-1, and ARP-2, ARP-5 impeded angiogenesis in zebrafish embryos. Additionally, ARP-5 downregulated the VEGF/VEGFR2 signaling pathway in a dose-dependent manner, suggesting that ARP-5 exerts its anti-angiogenic activities by blocking the VEGF/VEGFR2-mediated angiogenesis signaling pathway. Taken together, the study findings shed light on the primary structure and bioactivity of ARPs.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Liang Zou
- School of Food and Biological Engineering Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China..
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
5
|
Nie X, Li J, Cheng Y, Rangsinth P, Wu X, Zheng C, Shiu PHT, Li R, Xu N, He Y, Lau BWM, Seto SW, Zhang J, Lee SMY, Leung GPH. Characterization of a polysaccharide from Amauroderma rugosum and its proangiogenic activities in vitro and in vivo. Int J Biol Macromol 2024; 271:132533. [PMID: 38777026 DOI: 10.1016/j.ijbiomac.2024.132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Amauroderma rugosum (AR), also known as "Blood Lingzhi" in Chinese, is a basidiomycete belonging to the Ganodermataceae family. Four polysaccharide fractions were systematically isolated and purified from AR. Subsequently, their compositions were examined and analyzed via high-performance gel permeation chromatography (HPGPC), analysis of the monosaccharide composition, Fourier-transform infrared spectroscopy (FT-IR), and 1H nuclear magnetic resonance (NMR). The zebrafish model was then used to screen for proangiogenic activities of polysaccharides by inducing vascular insufficiency with VEGF receptor tyrosine kinase inhibitor II (VRI). The third fraction of AR polysaccharides (PAR-3) demonstrated the most pronounced proangiogenic effects, effectively ameliorating VRI-induced intersegmental vessel deficiency in zebrafish. Concurrently, the mRNA expression levels of vascular endothelial growth factor (VEGF)-A and VEGF receptors were upregulated by PAR-3. Moreover, the proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) were also stimulated by PAR-3, consistently demonstrating that PAR-3 possesses favorable proangiogenic properties. The activation of the Akt, ERK1/2, p38 MAPK, and FAK was most likely the underlying mechanism. In conclusion, this study establishes that PAR-3 isolated from Amauroderma rugosum exhibits potential as a bioresource for promoting angiogenesis.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China.
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Yulin He
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Li J, Liu Z, Wu X, Lee SMY, Seto SW, Zhang J, Zhou GC, Leung GPH. Anti-metastatic effects of AGS-30 on breast cancer through the inhibition of M2-like macrophage polarization. Biomed Pharmacother 2024; 172:116269. [PMID: 38367549 DOI: 10.1016/j.biopha.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 μM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Pharmacy, Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Li J, Nie X, Panthakarn Rangsinth, Wu X, Zheng C, Cheng Y, Shiu PHT, Li R, Lee SMY, Fu C, Zhang J, Leung GPH. Structure and activity relationship analysis of xanthones from mangosteen: Identifying garcinone E as a potent dual EGFR and VEGFR2 inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155140. [PMID: 37939410 DOI: 10.1016/j.phymed.2023.155140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Xanthones are among the most fundamental phytochemicals in nature. The anti-cancer activities of xanthones and their derivatives have been extensively studied. Recently, we found that garcinone E (GE), an effective anti-cancer phytochemical isolated from mangosteen (Garcinia mangostanal.), showed promising anti-cancer effects in vitro and in vivo. However, little is known about its effects on epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) activity. PURPOSE This study aimed to identify potent dual EGFR and VEGFR2 inhibitors from mangosteen-derived xanthones using structure-activity relationship analyses. STUDY DESIGN The interaction of xanthones with EGFR and VEGFR2 was analyzed using molecular docking experiments. The kinase activities of EGFR and VEGFR2 were determined using bioluminescence assays. The rat aortic ring and Matrigel plug angiogenesis assays were used to evaluate blood vessel formation ex vivo and in vivo. A breast tumor-bearing nude mouse model was established to examine the anti-tumor effects of different xanthones. RESULTS Molecular docking analysis showed that GE bound tightly to EGFR and VEGFR2, with binding energies of -9.73 and -9.56 kcal/mol, respectively. Kinase activity assessment showed that GE strongly inhibited both EGFR and VEGFR2 kinase activity, with IC50 values of 315.4 and 158.2 nM, respectively. Moreover, GE significantly abolished the EGF- and VEGF-induced phosphorylation of EGFR and VEGFR2, respectively. GE also showed strong inhibitory effects on cancer cell growth, endothelial cell migration, invasion, and tube formation. Ex vivo and in vivo angiogenesis assays showed that GE dose-dependently suppressed blood vessel formation in the rat aorta, Matrigel plugs, and transgenic zebrafish embryos, with the lowest effective concentration of 0.25 μM. Furthermore, GE (2 mg/kg) strongly inhibited tumor growth and reduced tumor weight in MDA-MB-231 breast tumor-xenografted mice. GE significantly reduced microvessel density and downregulated the expression of VEGFR2, EGFR, and Ki67 in tumor tissues. CONCLUSION The present study demonstrated that GE was the most potent dual inhibitor of EGFR and VEGFR2 among all xanthones tested. These findings may provide valuable information for the future development of novel and effective dual inhibitors of EGFR and VEGFR2.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrient, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
9
|
Li R, Zheng C, Shiu PHT, Rangsinth P, Wang W, Kwan YW, Wong ESW, Zhang Y, Li J, Leung GPH. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal cancer cells by mediating a reactive oxygen species–dependent JNK signaling pathway. Biomed Pharmacother 2023; 162:114617. [PMID: 37001180 DOI: 10.1016/j.biopha.2023.114617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Despite various therapeutic approaches, colorectal cancer is among the most fatal diseases globally. Hence, developing novel and more effective methods for colorectal cancer treatment is essential. Recently, reactive oxygen species (ROS)/JNK signaling pathway has been proposed as the potential target for the anticancer drug discovery. The present study investigated the anticancer effects of the bioactive xanthone garcinone E (GAR E) in mangosteen and explored its underlying mechanism of action. HT-29 and Caco-2 cancer cells were used as in vitro models to study the anticancer effect of GAR E. The findings demonstrated that GAR E inhibited colony formation and wound healing, whereas triggered the production of ROS, which induced mitochondrial dysfunction and apoptosis, causing cell cycle arrest at the Sub G1 phase. Additionally, GAR E treatment elevated the ratio of Bax/Bcl-2 and activated PARP, caspases 3 and 9, and JNK1/2. These GAR E-induced cytotoxic activities and expression of signaling proteins were reversed by the antioxidant N-acetyl-L-cysteine and JNK inhibitor SP600125, indicating the involvement of ROS/JNK signaling pathways. In vivo experiments using an HT-29 xenograft nude mouse model also demonstrated the antitumor effect of GAR E. In conclusion, our findings showed that GAR E might be potentially effective in treating colorectal cancer and provided insights into the development of xanthones as novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wen Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Emily Sze-Wan Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Yanbo Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
10
|
Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, Das G, Loizzo MR. Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1969. [PMID: 37653887 PMCID: PMC10221142 DOI: 10.3390/plants12101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
In spite of the progress in treatment strategies, cancer remains a major cause of death worldwide. Therefore, the main challenge should be the early diagnosis of cancer and the design of an optimal therapeutic strategy to increase the patient's life expectancy as well as the continuation of the search for increasingly active and selective molecules for the treatment of different forms of cancer. In the recent decades, research in the field of natural compounds has increasingly shifted towards advanced and molecular level understandings, thus leading to the development of potent anti-cancer agents. Among them is the diterpene lactone andrographolide, isolated from Andrographis paniculata (Burm.f.) Wall. ex Nees that showed shows a plethora of biological activities, including not only anti-cancer activity, but also anti-inflammatory, anti-viral, anti-bacterial, neuroprotective, hepatoprotective, hypoglycemic, and immunomodulatory properties. Andrographolide has been shown to act as an anti-tumor drug by affecting specific molecular targets that play a part in the development and progression of several cancer types including breast, lung, colon, renal, and cervical cancer, as well as leukemia and hepatocarcinoma. This review comprehensively and systematically summarized the current research on the potential anti-cancer properties of andrographolide highlighting its mechanisms of action, pharmacokinetics, and potential side effects and discussing the future perspectives, challenges, and limitations of use.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Subrata Das
- Department of Botany and Biotechnology, Karimganj College, Assam University, Assam 788710, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| |
Collapse
|
11
|
Li X, Yu J, Wu X, Hu C, Wang X. Synthesis of 12-quinoline substituted andrographolide derivatives and their preliminary evaluation as anti-aggregation drugs. Aust J Chem 2023. [DOI: 10.1071/ch22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Based on the structure of the natural product andrographolide, a series of novel 12-quinoline substituted derivatives 9 were designed and synthesized. In preliminary biological evaluation, these synthesized compounds showed prominent anti-platelet aggregation activities in response to thrombin and adenosine diphosphate (ADP) agonists. Among them, compound 9o (inhibition rate 55.73%, IC50 0.36 µM/L) had the highest anti-platelet aggregation activity induced by ADP. Compound 9q (inhibition rate 54.31%, IC50 0.30 µM/L) showed the highest anti-platelet aggregation activity induced by thrombin. Most of the derivatives had no significant cytotoxicity. Our research results provide a novel candidate drug structure for anti-platelet aggregation and enrich the scope of application of andrographolide derivatives.
Collapse
|
12
|
Cheng Y, Wu X, Nie X, Wu Y, Zhang C, Lee SMY, Lv K, Leung GPH, Fu C, Zhang J, Li J. Natural compound glycyrrhetinic acid protects against doxorubicin-induced cardiotoxicity by activating the Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154407. [PMID: 36070662 DOI: 10.1016/j.phymed.2022.154407] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As one of the most classic antineoplastic agents, doxorubicin (Dox) is extensively used to treat a wide range of cancers. Nevertheless, the clinical outcomes of Dox-based therapies are severely hampered due to the significant cardiotoxicity. Glycyrrhetinic acid (GA) is the major biologically active compound of licorice, one of the most well-known food additives and medicinal plants in the world. We previously demonstrated that GA has the potential capability to protect mice from Dox-induced cardiac injuries. However, the underlying cardioprotective mechanism remains unexplored. PURPOSE To investigate the cardioprotective benefits of GA against Dox-induced cardiotoxicity and to elucidate its mechanisms of action. STUDY DESIGN/METHODS H9c2 cardiomyoblasts and AC16 cardiomyocytes were used as the cell models in vitro. A transgenic zebrafish model and a 4T1 mouse breast cancer model were applied to explore the cardioprotective effects of GA in vivo. RESULTS In vitro, GA inhibited Dox-induced cell death and LDH release in H9c2 and AC16 cells without affecting the anti-cancer effects of Dox. GA significantly alleviated Dox-induced ROS generation, mitochondrial dysfunction, and apoptosis in H9c2 cells. Moreover, GA abolished the expression of pro-apoptotic proteins and restored Nrf2/HO-1 signaling pathway in Dox-treated H9c2 cells. On the contrary, Nrf2 knockdown strongly abrogated the cardioprotective effects of GA on Dox-treated H9c2 cells. In vivo, GA attenuated Dox-induced cardiac dysfunction by restoring stroke volume, cardiac output, and fractional shortening in the transgenic zebrafish embryos. In a 4T1 mouse breast cancer model, GA dramatically prevented body weight loss, attenuated cardiac dysfunction, and prolonged survival rate in Dox-treated mice, without compromising Dox's anti-tumor efficacy. Consistently, GA attenuated oxidative injury, reduced cardiomyocytes apoptosis, and restored the expressions of Nrf2 and HO-1 in Dox-treated mouse hearts. CONCLUSION GA protects against Dox-induced cardiotoxicity by suppressing oxidative stress, mitochondrial dysfunction, and apoptosis via upregulating Nrf2/HO-1 signaling pathway. These findings could provide solid evidence to support the further development of GA as a feasible and safe adjuvant to Dox chemotherapy for overcoming Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Li J, Cheng Y, Li R, Wu X, Zheng C, Shiu PHT, Chan JCK, Rangsinth P, Liu C, Leung SWS, Lee SMY, Zhang C, Fu C, Zhang J, Cheung TMY, Leung GPH. Protective Effects of Amauroderma rugosum on Doxorubicin-Induced Cardiotoxicity through Suppressing Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Activating Akt/mTOR and Nrf2/HO-1 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9266178. [PMID: 35693699 PMCID: PMC9177334 DOI: 10.1155/2022/9266178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 12/15/2022]
Abstract
Clinical outcomes for doxorubicin (Dox) are limited by its cardiotoxicity but a combination of Dox and agents with cardioprotective activities is an effective strategy to improve its therapeutic outcome. Natural products provide abundant resources to search for novel cardioprotective agents. Ganoderma lucidum (GL) is the most well-known edible mushroom within the Ganodermataceae family. It is commonly used in traditional Chinese medicine or as a healthcare product. Amauroderma rugosum (AR) is another genus of mushroom from the Ganodermataceae family, but its pharmacological activity and medicinal value have rarely been reported. In the present study, the cardioprotective effects of the AR water extract against Dox-induced cardiotoxicity were studied in vitro and in vivo. Results showed that both the AR and GL extracts could potentiate the anticancer effect of Dox. The AR extract significantly decreased the oxidative stress, mitochondrial dysfunction, and apoptosis seen in Dox-treated H9c2 rat cardiomyocytes. However, knockdown of Nrf2 by siRNA abolished the protective effects of AR in these cells. In addition, Dox upregulated the expression of proapoptotic proteins and downregulated the Akt/mTOR and Nrf2/HO-1 signaling pathways, and these effects could be reversed by the AR extract. Consistently, the AR extract significantly prolonged survival time, reversed weight loss, and reduced cardiac dysfunction in Dox-treated mice. In addition, oxidative stress and apoptosis were suppressed, while Nrf2 and HO-1 expressions were elevated in the heart tissues of Dox-treated mice after treatment with the AR extract. However, the GL extract had less cardioprotective effect against Dox in both the cell and animal models. In conclusion, the AR water extract demonstrated a remarkable cardioprotective effect against Dox-induced cardiotoxicity. One of the possible mechanisms for this effect was the upregulation of the mTOR/Akt and Nrf2/HO-1-dependent pathways, which may reduce oxidative stress, mitochondrial dysfunction, and cardiomyocyte apoptosis. These findings suggested that AR may be beneficial for the heart, especially in patients receiving Dox-based chemotherapy.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Cho-Ki Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Susan Wai-Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Doi H, Matsui T, Dijkstra JM, Ogasawara A, Higashimoto Y, Imamura S, Ohye T, Takematsu H, Katsuda I, Akiyama H. Andrographolide, isolated from Andrographis paniculata, induces apoptosis in monocytic leukemia and multiple myeloma cells via augmentation of reactive oxygen species production. F1000Res 2022; 10:542. [PMID: 35528957 PMCID: PMC9069414 DOI: 10.12688/f1000research.53595.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Andrographolide (Andro) is a diterpenoid component of the plant
Andrographis paniculata that is known for its anti-tumor activity against a variety of cancer cells. Methods: We studied the effects of Andro on the viability of the human leukemia monocytic cell line THP-1 and the human multiple myeloma cell line H929. Andro was compared with cytosine arabinoside (Ara-C) and vincristine (VCR), which are well-established therapeutics against hematopoietic tumors. The importance of reactive oxygen species (ROS) production for the toxicity of each agent was investigated by using an inhibitor of ROS production, N-acetyl-L-cysteine (NAC). Results: Andro reduced the viability of THP-1 and H929 in a concentration-dependent manner. H929 viability was highly susceptible to Andro, although only slightly susceptible to Ara-C. The agents Andro, Ara-C, and VCR each induced apoptosis, as shown by cellular shrinkage, DNA fragmentation, and increases in annexin V-binding, caspase-3/7 activity, ROS production, and mitochondrial membrane depolarization. Whereas Ara-C and VCR increased the percentages of cells in the G0/G1 and G2/M phases, respectively, Andro showed little or no detectable effect on cell cycle progression. The apoptotic activities of Andro were largely suppressed by NAC, an inhibitor of ROS production, whereas NAC hardly affected the apoptotic activities of Ara-C and VCR. Conclusions: Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells, underlining its potential as a therapeutic agent for treating hematopoietic tumors. The high toxicity for H929 cells, by a mechanism that is different from that of Ara-C and VCR, is encouraging for further studies on the use of Andro against multiple myeloma.
Collapse
Affiliation(s)
- Hiroki Doi
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Taei Matsui
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Johannes M. Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
| | - Atsushi Ogasawara
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Seiji Imamura
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Tamae Ohye
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Hiromu Takematsu
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| | - Itsuro Katsuda
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Hidehiko Akiyama
- Field of Clinical Laboratory Sciences, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
- Faculty of Medical Technology, Fujita Health University School of Medical Sciences, Toyoake, 470-1192, Japan
| |
Collapse
|
16
|
Liu Z, Wu X, Dai K, Li R, Zhang J, Sheng D, Lee SMY, Leung GPH, Zhou GC, Li J. The new andrographolide derivative AGS-30 induces apoptosis in human colon cancer cells by activating a ROS-dependent JNK signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153824. [PMID: 34763314 DOI: 10.1016/j.phymed.2021.153824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The anti-cancer activity of andrographolide (Andro) has been extensively demonstrated in recent years. It is supposed that modifying the chemical structure of Andro can improve its efficacy and reduce its toxicity. PURPOSE In this study, the anti-cancer effect of a 14β-(2'-chlorophenoxy) derivative of andrographolide known as AGS-30 was investigated, and its underlying mechanisms were also explored. STUDY DESIGN/METHODS Different cancer cells were used to evaluate and compare the in vitro anti-cancer effects of Andro and AGS-30. Human colon cancer cells HT-29 and HCT-116 were used to study the underlying anti-cancer mechanisms of AGS-30. HT-29 cells xenografted in nude mouse model was used to compare the in vivo anti-tumour efficacies of Andro and AGS-30. RESULT In vitro studies showed that AGS-30 possessed an anti-cancer effect by inhibiting the viability, colony formation and migration of cancer cells. It significantly induced the generation of reactive oxygen species (ROS), caused the loss of mitochondrial membrane potential and triggered the apoptosis in colon cancer cells. These effects of AGS-30 were more potent than those of Andro. In addition, the expression levels of proteins associated with apoptosis, including phospho-JNK1/2 as well as cleaved caspase 9, caspase 3, and poly(ADP ribose) polymerase, were elevated in AGS-30-treated colon cancer cells. Moreover, these elevated levels of the proteins were inhibited by the antioxidant N-acetylcysteine and the JNK inhibitor SP600125, suggesting the involvement of ROS/JNK-dependent mechanisms in AGS-30-induced apoptosis. The in vitro anti-cancer effect could be reproduced in an HT-29 colon cancer cell xenografted nude mouse model. CONCLUSION The anti-cancer effect of AGS-30 is stronger than that of Andro. AGS-30 induces apoptosis of colon cancer cells through ROS/JNK-dependent pathway. Our findings may provide insights for the future development of derivatives of Andro as novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Pharmacy, Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Kun Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dekuan Sheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
18
|
Zhao C, Kam HT, Chen Y, Gong G, Hoi MPM, Skalicka-Woźniak K, Dias ACP, Lee SMY. Crocetin and Its Glycoside Crocin, Two Bioactive Constituents From Crocus sativus L. (Saffron), Differentially Inhibit Angiogenesis by Inhibiting Endothelial Cytoskeleton Organization and Cell Migration Through VEGFR2/SRC/FAK and VEGFR2/MEK/ERK Signaling Pathways. Front Pharmacol 2021; 12:675359. [PMID: 33995106 PMCID: PMC8120304 DOI: 10.3389/fphar.2021.675359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Crocetin and crocin are two important carotenoids isolated from saffron (Crocus sativus L.), which have been used as natural biomedicines with beneficial effects for improving the suboptimal health status associated with abnormal angiogenesis. However, the anti-angiogenic effects and underlying mechanisms of the effects of crocetin and crocin have not been investigated and compared. The anti-angiogenic effects of crocetin and crocin were tested on human umbilical vein endothelial cells (HUVECs) in vitro, and in zebrafish in vivo. In vivo, crocetin (20 μM) and crocin (50 and 100 μM) significantly inhibited subintestinal vein vessels formation, and a conversion process between them existed in zebrafish, resulting in a difference in their effective concentrations. In the HUVEC model, crocetin (10, 20 and 40 μM) and crocin (100, 200 and 400 μM) inhibited cell migration and tube formation, and inhibited the phosphorylation of VEGFR2 and its downstream pathway molecules. In silico analysis further showed that crocetin had a higher ability to bind with VEGFR2 than crocin. These results suggested that crocetin was more effective than crocin in inhibiting angiogenesis through regulation of the VEGF/VEGFR2 signaling pathway. These compounds, especially crocetin, are potential candidate natural biomedicines for the management of diseases associated with abnormal blood vessel growth, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hio-Tong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Alberto Carlos Pires Dias
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB-UM), AgroBioPlant Group, Department of Biology, University of Minho, Braga, Portugal
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
19
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
20
|
Amauroderma rugosum Protects PC12 Cells against 6-OHDA-Induced Neurotoxicity through Antioxidant and Antiapoptotic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6683270. [PMID: 33628381 PMCID: PMC7889343 DOI: 10.1155/2021/6683270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/01/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
Amauroderma rugosum (AR) is a dietary mushroom in the Ganodermataceae family whose pharmacological activity and medicinal value have rarely been reported. In this study, the antioxidant capacity and neuroprotective effects of AR were investigated. The aqueous extract of AR was confirmed to contain phenolic compounds, polysaccharides, and triterpenes. The results of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and total antioxidant capacity assays revealed that AR extract scavenged reactive oxygen species. Moreover, AR extract decreased the cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis of PC12 cells induced by 6-hydroxydopamine (6-OHDA). In addition, 6-OHDA upregulated the expressions of proapoptotic proteins and downregulated the Akt (protein kinase B)/mTOR- (mammalian target of rapamycin-) and MEK (mitogen-activated protein kinase kinase)/ERK- (extracellular signal-regulated kinases-) dependent signaling pathways. These effects of 6-OHDA were abolished or partially reversed by AR extract. Furthermore, the neuroprotective effects of AR in 6-OHDA-treated PC12 cells were significantly abolished by Akt and MEK inhibitor. Thus, AR extract possesses neuroprotective effects, probably through its antioxidant and antiapoptotic effects. These findings suggest the potential application of AR in the prevention or treatment of oxidative stress-related neurodegenerative diseases such as Parkinson's disease.
Collapse
|
21
|
Ren X, Xu W, Sun J, Dong B, Awala H, Wang L. Current Trends on Repurposing and Pharmacological Enhancement of Andrographolide. Curr Med Chem 2021; 28:2346-2368. [PMID: 32778020 DOI: 10.2174/0929867327666200810135604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Andrographolide, the main bioactive component separated from Andrographis paniculata in 1951, has been scrutinized with a modern drug discovery approach for anti-inflammatory properties since 1984. Identification of new uses of existing drugs can be facilitated by searching for evidence linking them to known or yet undiscovered drug targets and human disease states to develop new therapeutic indications.Furthermore, a wide spectrum of biological properties of andrographolide such as anticancer, antibacterial, antiviral, hepatoprotective, antioxidant, anti-malarial, anti-atherosclerosis are also reported. However, poor water solubility and instability limit its clinical application. It becomes crucial to enhance its pharmacological function and find a new treatment option for more diseases. Therefore, this article reviews the major recent developments in andrographolide, including repurposing applications in different diseases and underlying mechanisms, particularly focusing on pharmacological enhancement of andrographolide such as derivatives, chemical modifications with potent biological activity and drug delivery. The repurposing and pharmacological enhancement of andrographolide would not only have exciting therapeutic potential to different diseases to facilitate drug marketing, but also decrease the economic burden on healthcare worldwide.
Collapse
Affiliation(s)
- Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hussein Awala
- Faculty of Science, Lebanese University, Nabatieh, Lebanon
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
22
|
Li Y, Liu Y, Du B, Cheng G. Reshaping Tumor Blood Vessels to Enhance Drug Penetration with a Multistrategy Synergistic Nanosystem. Mol Pharm 2020; 17:3151-3164. [PMID: 32787273 DOI: 10.1021/acs.molpharmaceut.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Genyang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
23
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|