1
|
Dräger S, Mester T, Tenor H, Ludwig RJ, Bieber K. Distinct Impact of Phosphodiesterade-4 (PDE4) Inhibition in Two Pre-clinical Psoriasis Models. Acta Derm Venereol 2025; 105:adv41972. [PMID: 40192433 PMCID: PMC11995730 DOI: 10.2340/actadv.v105.41972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Affiliation(s)
- Sören Dräger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University Hospital Schleswig-Holstein (UKSH), Ratzeburger, Germany.
| | - Thorge Mester
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University Hospital Schleswig-Holstein (UKSH), Ratzeburger, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Wu Y, Ni T, Zhang M, Fu S, Ren D, Feng Y, Liang H, Zhang Z, Zhao Y, He Y, Yang Y, Tian Z, Yan T, Liu J. Treatment with β-Adrenoceptor Agonist Isoproterenol Reduces Non-parenchymal Cell Responses in LPS/D-GalN-Induced Liver Injury. Inflammation 2024; 47:733-752. [PMID: 38129360 PMCID: PMC11074027 DOI: 10.1007/s10753-023-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
There is an increasing evidence indicating the involvement of the sympathetic nervous system (SNS) in liver disease development. To achieve an extensive comprehension of the obscure process by which the SNS alleviates inflammatory damage in non-parenchymal liver cells (NPCs) during acute liver failure (ALF), we employ isoproterenol (ISO), a beta-adrenoceptor agonist, to mimic SNS signaling. ISO was administered to C57BL/6J mice to establish an acute liver failure (ALF) model using LPS/D-GalN, which was defined as ISO + ALF. Non-parenchymal cells (NPCs) were isolated from liver tissues and digested for tandem mass tag (TMT) labeled proteomics to identify differentially expressed proteins (DEPs). The administration of ISO resulted in a decreased serum levels of pro-inflammatory cytokines, e.g., TNF-α, IL-1β, and IL-6 in ALF mice, which alleviated liver damage. By using TMT analysis, it was possible to identify 1587 differentially expressed proteins (DEPs) in isolated NPCs. Notably, over 60% of the DEPs in the ISO + ALF vs. ALF comparison were shared in the Con vs. ALF comparison. According to enrichment analysis, the DEPs influenced by ISO in ALF mice were linked to biological functions of heme and fatty acid metabolism, interferon gamma response, TNFA signaling pathway, and mitochondrial oxidation function. Protein-protein interaction network analysis indicated Mapk14 and Caspase3 may serve as potentially valuable indicators of ISO intervention. In addition, the markers on activated macrophages, such as Mapk14, Casp1, Casp8, and Mrc1, were identified downregulated after ISO initiation. ISO treatment increased the abundance of anti-inflammatory markers in mouse macrophages, as evidenced by the immunohistochemistry (IHC) slides showing an increase in Arg + staining and a reduction in iNOS + staining. Furthermore, pretreatment with ISO also resulted in a reduction of LPS-stimulated inflammation signaling markers, Mapk14 and NF-κB, in human THP-1 cells. Prior treatment with ISO may have the potential to modify the biological functions of NPCs and could serve as an innovative pharmacotherapy for delaying the pathogenesis and progression of ALF.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tianzhi Ni
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Mengmeng Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Honghui Hospital, Xi'an Jiaotong University, Xi'an City, China
| | - Shan Fu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Danfeng Ren
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yali Feng
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Huiping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ze Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingren Zhao
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingli He
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yuan Yang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Zhen Tian
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| | - Taotao Yan
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| | - Jinfeng Liu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| |
Collapse
|
3
|
OKANO A, TANAKA S, YAMADA K, HASHIMOTO N, WATANABE J. Mechanisms of interleukin-10 induction in murine spleen and RAW264 cells by Latilactobacillus curvatus K4G4 isolated from fermented Brassica rapa L. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:227-233. [PMID: 38966044 PMCID: PMC11220328 DOI: 10.12938/bmfh.2023-073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/18/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented Brassica rapa L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented B. rapa L., and the IL-10 level in the supernatant was measured. Latilactobacillus curvatus K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.
Collapse
Affiliation(s)
- Aki OKANO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Sachi TANAKA
- Academic Assembly (Institute of Agriculture), Shinshu
University, Minami-Minowa, Nagano 399-4598, Japan
| | - Kazuha YAMADA
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoto HASHIMOTO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Jun WATANABE
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Li ZY, Chang SH, Liu KT, Wu AE, Hsu CS, Huang SW, Chung MC, Wang SC, Kao JK, Chen YJ, Shieh JJ. Low-dose imiquimod induces melanogenesis in melanoma cells through an ROS-mediated pathway. J Dermatol Sci 2024; 113:18-25. [PMID: 38185543 DOI: 10.1016/j.jdermsci.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Melanogenesis is the process of melanin maturation which not only protects skin from UV radiation but also plays an important role in antigenicity of melanomas. Imiquimod (IMQ) is a toll-like receptor 7 (TLR7) agonist that exhibits antiviral and anticancer activity. OBJECTIVE To explore whether IMQ could induce melanogenesis in melanoma cells. METHODS The mouse melanoma cell line B16F10, the mouse immortalized melanocyte Melan-A, and human melanoma cell lines MNT-1, C32 and A375 were utilized in this study. The pigmented level was observed by the centrifuged cell pellet. The intracellular and extracellular melanin levels were examined in the absorbance in NaOH-extracted cell lysate and cell-cultured medium, respectively. The expression of melanogenesis related proteins was examined by immunoblotting. The intracellular cyclic AMP amount was evaluated by the cAMP Glo assay kit. The activity of phosphodiesterase 4B (PDE4B) was investigated by CREB reporter assay with overexpressed PDE4B or not. RESULTS We demonstrated that a low dose of IMQ could trigger melanogenesis in B16F10 cells. IMQ induced microphthalmia-associated transcription factor (MITF) nuclear translocation, upregulated the expression of melanogenesis-related proteins, increased tyrosinase (TYR) activity, and led to pigmentation in B16F10 cells. Next, we found that IMQ-induced melanogenesis was activated by excessive intracellular cAMP accumulation, which was regulated through IMQ-mediated PDE4B inhibition. Finally, IMQ-induced ROS production was found to be involved in melanogenesis by its control of PDE4B activity. CONCLUSIONS Low dose of IMQ could activate melanogenesis through the ROS/PDE4B/PKA pathway in melanoma cells.
Collapse
Affiliation(s)
- Zheng-Yi Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Ting Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Alaina Edelie Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Shi-Wei Huang
- Center for Cell Therapy and Translation Research, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology/Oncology, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ju Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Wang L, Li M, Zhu C, Qin A, Wang J, Wei X. The protective effect of Palmatine on depressive like behavior by modulating microglia polarization in LPS-induced mice. Neurochem Res 2022; 47:3178-3191. [PMID: 35917005 DOI: 10.1007/s11064-022-03672-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to evaluate the protective effect of Palmatine on LPS-induced depressive like behavior and explore its potential mechanism. The mice were intragastrically treated with Fluoxetine or Palmatine once daily for 1 week. After the last drug administration, the mice were intraperitoneally challenged with LPS and suffered for Sucrose preference test, Tail suspension test, Forced swimming test and Open field test. The pro-inflammatory biomarkers were measured by ELISA, qPCR, WB and immunofluorescence. As a result, the administration of Palmatine effectively lessened depressive-like behavior. Palmatine could decrease the levels of pro-inflammatory cytokines TNF-α, IL-6, the expressions of CD68, iNOS mRNA, as well as increase the levels of anti-inflammatory cytokines IL-4, IL-10, the expressions of CD206, Arg1 mRNA, Ym1 mRNA both in LPS-induced mice and in LPS-induced BV2 cells. The beneficial effect of Palmatine might be attributed to the suppression of M1 microglia polarization and the promotion of M2 microglia polarization via PDE4B/KLF4 signaling. The similar results were observed in CUMS-induced depressive mice. The transfection with PDE4B SiRNA or KLF4 SiRNA indicated that PDE4B and KLF4 were both involved in the Palmatine-mediated microglia polarization. Molecular docking indicated that Palmatine could interact with PDE4B. In conclusion, this research demonstrated that Palmatine attenuated depressive like behavior by modulating microglia polarization via PDE4B/KLF4 signaling.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China
| | - Min Li
- Department of pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, 250014, Jinan, China
| | - Cuiping Zhu
- Pukou branch of Jiangsu Province Hospital, No.166, Shanghe street, 211800, Nanjing, China
| | - Aiping Qin
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China
| | - Jinchun Wang
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China.
| | - Xianni Wei
- Department of Pharmacy, Xiamen Haicang Hospital, No. 89, Haiyu Road, 361026, Xiamen, China.
| |
Collapse
|
6
|
Feng Y, Xie H, Shi F, Chen D, Xie A, Li J, Fang C, Wei H, Huang H, Pan X, Tang X, Huang J. Roles of TLR7 in Schistosoma japonicum Infection-Induced Hepatic Pathological Changes in C57BL/6 Mice. Front Cell Infect Microbiol 2021; 11:754299. [PMID: 34692568 PMCID: PMC8531751 DOI: 10.3389/fcimb.2021.754299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
S. japonicum infection can induce granulomatous inflammation in the liver of the host. Granulomatous inflammation limits the spread of infection and plays a role in host protection. Toll-like receptor 7 (TLR7) is an endosomal TLR that recognizes single-stranded RNA (ssRNA). In this study, the role of TLR7 in S. japonicum infection-induced hepatitis was investigated in both normal and TLR7 knockout (KO) C57BL/6 mice. The results indicated that TLR7 KO could aggravate S. japonicum infection-induced damage in the body, with less granuloma formation in the tissue, lower WBCs in blood, and decreased ALT and AST in the serum. Then, the expression of TLR7 was detected in isolated hepatic lymphocytes. The results indicated that the percentage of TLR7+ cells was increased in the infected mice. Hepatic macrophages, DCs, and B cells could express TLR7, and most of the TLR7-expressing cells in the liver of infected mice were macrophages. The percentage of TLR7-expressing macrophages was also increased after infection. Moreover, macrophages, T cells, and B cells showed significant changes in the counts, activation-associated molecule expression, and cytokine secretion between S. japonicum-infected WT and TLR7 KO mice. Altogether, this study indicated that TLR7 could delay the progression of S. japonicum infection-induced hepatitis mainly through macrophages. DCs, B cells, and T cells were involved in the TLR7-mediated immune response.
Collapse
Affiliation(s)
- Yuanfa Feng
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - He Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|