1
|
Dwivedi KK, Wu Y, Rother J, Wagenseil JE. Sex- and region-specific differences in microstructural remodeling and passive biomechanics of the aorta correlate with aneurysm propensity in a mouse model of severe Marfan syndrome. Acta Biomater 2025:S1742-7061(25)00382-4. [PMID: 40414262 DOI: 10.1016/j.actbio.2025.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/14/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the gene that encodes fibrillin-1, a glycoprotein necessary for elastic fiber assembly and stability in the large elastic arteries. MFS is associated with aortic aneurysms that typically occur in the proximal ascending aorta and have worse outcomes in males. Mechanisms for the sex- and region-specific differences in aneurysm development and outcomes are unknown. We quantified aortic geometry, microstructural remodeling, and passive biomechanics of the thoracic ascending, thoracic descending, abdominal suprarenal, and abdominal infrarenal aorta in 4 months old male and female Fbn1mgR/mgR (a model of severe MFS) and littermate wild-type mice to determine correlations between aortic geometry, microstructural remodeling, biomechanics, and aneurysmal dilation. We showed that aneurysmal dilation was strongly correlated with unloaded thickness, microstructural remodeling including loss of elastic fibers, deposition of collagen fibers, and decrease in cell nuclei number, and mechanical metrics including physiologic and ex vivo circumferential material stiffness. A multivariable mixed model showed that unloaded thickness, elastic fiber degradation, and ex vivo material stiffness predicted aneurysmal dilation with an adjusted R2 = 0.8818. Our results highlight the potential of geometric, microstructural remodeling, and biomechanical metrics to serve as physical biomarkers for personalized aortic aneurysm diagnosis and management in MFS. STATEMENT OF SIGNIFICANCE: Marfan syndrome (MFS) is a genetic disease associated with aortic aneurysms that have distinct sex- and region-specific outcomes. The mechanisms driving these variations are unclear. We used a severe MFS mouse model (Fbn1mgR/mgR) to explore differences in microstructural remodeling and passive wall mechanics along the aortic length in males and females. We correlated these changes with aneurysm severity, as quantified by aortic dilation. We found that sex- and region-specific alterations in unloaded thickness, microstructural remodeling, and passive mechanical properties of the aortic wall play a critical role in aortic dilation. Our findings showed that mechanical metrics, particularly ex vivo material stiffness, may serve as biomarkers for the diagnosis and management of aortic aneurysms.
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Yufan Wu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Jacob Rother
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
2
|
Zaradzki M, Rehberg F, Zwaans V, Hecker M, Karck M, Arif R, Soethoff JP, Wagner AH. Stabilisation of extracellular matrix is crucial to rapamycin-mediated life span increase in Marfan mgR/mgR mice. Biochem Pharmacol 2025; 235:116830. [PMID: 40021021 DOI: 10.1016/j.bcp.2025.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Marfan syndrome is a hereditary connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene (FBN1) and altered TGF-β signalling. Life-threatening complications involve thoracic aortic aneurysms (TAA) and dissections due to the disruption of microfibrillar assembly in the aortic wall. We previously demonstrated that Rapamycin, a typical mTOR pathway inhibitor, limits the ascending aorta elastolysis and expansion, significantly increasing lifespan in an established murine model of Marfan syndrome (Zaradzki et al., Biochem Pharmacol 2022). This study aimed to investigate how mTOR inhibition stabilises the aorta in fibrillin-1 hypomorphic mgR/mgR mice and previously observed increased life expectancy. We used antibody microarrays to detect protein expression in the proximal thoracic aorta of sham or rapamycin-treated male and female mgR/mgR mice immediately after the two-week treatment. Immunofluorescence staining was performed to visualize and quantify protein expression in the ascending thoracic aorta and arch four weeks after the short-term rapamycin treatment was completed. We showed that rapamycin significantly increased the abundance of extracellular matrix (ECM) proteins like cytokeratin-18 and betaglycan, also known as the TGF-β type 3 receptor (TGFBR3). In addition, it raises the abundance of aggrecanase-2 (ADAMTS5) and xylosyltransferase-1 proteins, enzymes involved in ECM remodelling and homeostasis. In conclusion, rapamycin affects the composition and organization of key ECM components, which determine the structure-function relationships in the aorta, thereby maintaining the balance critical for the increase in life expectancy. Using mTOR modulators for targeted therapy may help to prevent aortic complications of MFS and improve clinical outcomes.
Collapse
Affiliation(s)
- Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Franziska Rehberg
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Vanessa Zwaans
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Jasmin P Soethoff
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany.
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Zhou X, Xu Q, Hu X, Klenotic PA, Valdivia A, Leshnower BG, Dong N, Narla G, Lin Z. PP2A Attenuates Thoracic Aneurysm and Dissection in Mouse Models of Marfan Syndrome. Hypertension 2025; 82:665-679. [PMID: 39878024 PMCID: PMC11922656 DOI: 10.1161/hypertensionaha.124.23494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS). METHODS Two distinct mouse models of MFS underwent daily oral administration of small-molecule activators of the PP2A compound DT-061 to assess its therapeutic potential. Echocardiography was performed to monitor the growth of the aortic root and ascending aorta. Histological evaluation was performed to assess alterations in the vascular wall. RNA-sequencing, Western blot, and immunostaining were performed to decipher the underlying mechanisms by which DT-061 suppresses AA progression. RESULTS PP2A activity decreased, while mTOR activity increased in both human and mouse aortas with MFS. Concordantly, oral administration of DT-061 increased PP2A activation, reducing aortic expansion in Marfan mice. DT-061 treatment also mitigated medial hypertrophy, elastin breakdown, and extracellular matrix deterioration in the ascending aorta, along with decreased metalloproteinase activities. Mechanistic studies suggest that DT-061 suppresses mTOR signaling and smooth muscle cell dedifferentiation, contributing to its effects on thoracic aortic aneurysm and dissection progression. CONCLUSIONS These studies demonstrate a pathological role of PP2A activity loss in the cause of MFS and implicate that activation of PP2A may serve as a novel therapeutic strategy to limit MFS progression, including aortic aneurysm formation.
Collapse
Affiliation(s)
- Xianming Zhou
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xu
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandra Valdivia
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley G Leshnower
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Lin
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Yang P, Liu H, Wang S, Xiao X, Jiang L, Le S, Chen S, Ye P, Xia J. PIEZO1 attenuates Marfan syndrome aneurysm development through TGF-β signaling pathway inhibition via TGFBR2. Eur Heart J 2025; 46:958-974. [PMID: 39585648 DOI: 10.1093/eurheartj/ehae786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/22/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND AND AIMS Marfan syndrome (MFS) is a hereditary disorder primarily caused by mutations in the FBN1 gene. Its critical cardiovascular manifestation is thoracic aortic aneurysm (TAA), which poses life-threatening risks. Owing to the lack of effective pharmacological therapies, surgical intervention continues to be the current definitive treatment. In this study, the role of Piezo-type mechanosensitive ion channel component 1 (Piezo1) in MFS was investigated and the activation of PIEZO1 was identified as a potential treatment for MFS. METHODS PIEZO1 expression was detected in MFS mice (Fbn1C1041G/+) and patients. Piezo1 conditional knockout mice in vascular smooth muscle cells of MFS mice (MFS × CKO) was generated, and bioinformatics analysis and experiments in vitro and in vivo were performed to investigate the role of Piezo1 in MFS. RESULTS PIEZO1 expression decreased in the aortas of MFS mice; MFS × CKO mice showed aggravated TAA, inflammation, extracellular matrix remodelling, and TGF-β pathway activation compared to MFS mice. Mechanistically, PIEZO1 knockout exacerbated the activation of the TGF-β signalling pathway by inhibiting the endocytosis and autophagy of TGF-β receptor 2 mediated by Rab GTPase 3C. Additionally, the pharmacological activation PIEZO1 through Yoda1 prevented TGF-β signalling pathway activation and reversed TAA in MFS mice. CONCLUSIONS Piezo1 deficiency aggravates MFS aneurysms by promoting TGF-β signalling pathway activation via TGF-β receptor 2 endocytosis and a decrease in autophagy. These data suggest that PIEZO1 may be a potential therapeutic target for MFS treatment.
Collapse
Affiliation(s)
- Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Hao Liu
- Department of Vascular Surgery, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaoyue Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
5
|
Liu MY, Wang M, Liu J, Sun AQ, He CS, Cong X, Kong W, Li W. Hemodynamic disturbance and mTORC1 activation: Unveiling the biomechanical pathogenesis of thoracic aortic aneurysms in Marfan syndrome. J Pharm Anal 2025; 15:101120. [PMID: 39989903 PMCID: PMC11847113 DOI: 10.1016/j.jpha.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 02/25/2025] Open
Abstract
Thoracic aortic aneurysm (TAA) significantly endangers the lives of individuals with Marfan syndrome (MFS), yet the intricacies of their biomechanical origins remain elusive. Our investigation delves into the pivotal role of hemodynamic disturbance in the pathogenesis of TAA, with a particular emphasis on the mechanistic contributions of the mammalian target of rapamycin (mTOR) signaling cascade. We uncovered that activation of the mTOR complex 1 (mTORC1) within smooth muscle cells, instigated by the oscillatory wall shear stress (OSS) that stems from disturbed flow (DF), is a catalyst for TAA progression. This revelation was corroborated through both an MFS mouse model (Fbn1 +/C1039G) and clinical MFS specimens. Crucially, our research demonstrates a direct linkage between the activation of the mTORC1 pathway and the intensity in OSS. Therapeutic administration of rapamycin suppresses mTORC1 activity, leading to the attenuation of aberrant SMC behavior, reduced inflammatory infiltration, and restoration of extracellular matrix integrity-collectively decelerating TAA advancement in our mouse model. These insights posit the mTORC1 axis as a strategic target for intervention, offering a novel approach to manage TAAs in MFS and potentially pave insights for current treatment paradigms.
Collapse
Affiliation(s)
- Ming-Yuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Center of Vascular Surgery, Beijing, 100050, China
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Meili Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junjun Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - An-Qiang Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chang-Shun He
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- The Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- The Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Wei Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, 100044, China
- The Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
6
|
Dwivedi KK, Rother J, Wagenseil JE. Age- and sex-specific biomechanics and extracellular matrix remodeling of the ascending aorta in a mouse model of severe Marfan syndrome. Am J Physiol Heart Circ Physiol 2024; 327:H1037-H1051. [PMID: 39212766 PMCID: PMC11482245 DOI: 10.1152/ajpheart.00391.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Thoracic aortic aneurysm (TAA) is associated with Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1. Sexual dimorphism has been recorded for TAA outcomes in MFS, but detailed studies on the differences in TAA progression in males and females and their relationships to outcomes have not been performed. The aims of this study were to determine sex differences in the diameter dilatation, mechanical properties, and extracellular matrix (ECM) remodeling over time in a severe mouse model (Fbn1mgR/mgR = MU) of MFS-associated TAA that has a shortened life span. Male and female MU and wildtype (WT) mice were used at 1-4 mo of age. Blood pressure and in vivo diameters of the ascending thoracic aorta were recorded using a tail-cuff system and ultrasound imaging, respectively. Ex vivo mechanics and ECM remodeling of the aorta were characterized using a biaxial test system and multiphoton imaging, respectively. We showed that mechanical properties, such as structural and material stiffness, and ECM remodeling, such as elastic and collagen fiber content, correlated with diameter dilatation during TAA progression. Male MU mice had accelerated rates of diameter dilatation, stiffening, and ECM remodeling compared with female MU mice which may have contributed to their decreased life span. The correlation of mechanical properties and ECM remodeling with diameter dilatation suggests that they may be useful biomarkers for TAA progression. The differences in diameter dilatation and life spans in male and female MU mice indicate that sex is an important consideration for managing thoracic aortic aneurysm in MFS. NEW & NOTEWORTHY Using a mouse model (Fbn1mgR/mgR = MU) of severe thoracic aortic aneurysm in Marfan syndrome (MFS), we found that male MU aorta had an accelerated time line and increased amounts of dilatation, stiffening, and extracellular matrix (ECM) remodeling compared with female MU aorta that may have contributed to an increased risk of fatigue failure with cyclic loading over time and a reduced life span. We suggest that aortic stiffness may provide useful information for clinical management of aneurysms in MFS.
Collapse
MESH Headings
- Animals
- Marfan Syndrome/complications
- Marfan Syndrome/metabolism
- Marfan Syndrome/physiopathology
- Marfan Syndrome/genetics
- Marfan Syndrome/pathology
- Female
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Male
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/etiology
- Disease Models, Animal
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/diagnostic imaging
- Biomechanical Phenomena
- Sex Factors
- Mice
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Vascular Remodeling
- Age Factors
- Dilatation, Pathologic
- Mice, Inbred C57BL
- Vascular Stiffness
- Adipokines
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jacob Rother
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Van Den Heuvel LJF, Peeters S, Meester JAN, Coucke PJ, Loeys BL. An exploration of alternative therapeutic targets for aortic disease in Marfan syndrome. Drug Discov Today 2024; 29:104023. [PMID: 38750929 DOI: 10.1016/j.drudis.2024.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Marfan syndrome is a rare connective tissue disorder that causes aortic dissection-related sudden death. Current conventional treatments, beta-blockers, and type 1 angiotensin II receptor blockers are prescribed to slow down aortic aneurysm progression and delay (prophylactic) aortic surgery. However, neither of these treatments ceases aortic growth completely. This review focuses on potential alternative therapeutic leads in the field, ranging from widely used medication with beneficial effects on the aorta to experimental inhibitors with the potential to stop aortic growth in Marfan syndrome. Clinical trials are warranted to uncover their full potential.
Collapse
Affiliation(s)
- Lotte J F Van Den Heuvel
- Center for Medical Genetics Antwerp, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium; Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Silke Peeters
- Center for Medical Genetics Antwerp, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Center for Medical Genetics Antwerp, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Bart L Loeys
- Center for Medical Genetics Antwerp, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
9
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|