1
|
Zhou J, Hou HT, Chen HX, Song Y, Zhou XL, Zhang LL, Xue HM, Yang Q, He GW. Plasma Exosomal Proteomics Identifies Differentially Expressed Proteins as Biomarkers for Acute Myocardial Infarction. Biomolecules 2025; 15:583. [PMID: 40305362 PMCID: PMC12025292 DOI: 10.3390/biom15040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Myocardial infarction (MI), including ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI), has been the leading cause of hospitalization and death. Exosomes participate in many physiological and pathological processes and have important effects on cell communication and function. This study analyzed the proteomic characteristics of plasma exosomes with the discovery of exosomal differentially expressed proteins (DEPs) in MI patients. Proteomics technology was used to identify the plasma exosomal DEPs in 41 patients in STEMI, NSTEMI, unstable angina, and CONTROL groups, and 406 exosomal DEPs were discovered. Further, 36 selected exosomal DEPs were validated with parallel reaction monitoring (PRM) in a new cohort of STEMI, NSTEMI, and CONTROL groups, and 7 were successfully verified. There were three (F13A1, TSPAN33, and YWHAZ) in the STEMI group and six (F13A1, TSPAN33, ITGA2B, GP9, GP5, and PPIA) in the NSTEMI group, and all were down-regulated compared to the CONTROL group with high sensitivity and specificity in MI that may be developed as biomarkers for MI and may become possible therapeutic targets for MI. Bioinformatics analysis revealed that these seven exosomal DEPs are of great significance in the molecular mechanism of MI. Therefore, the present study has provided insights to further explore the pathological mechanism and possible therapeutic targets in MI.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hai-Tao Hou
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Huan-Xin Chen
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Yu Song
- The Institute of Cardiovascular Diseases & Critical Care Unit, Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
| | - Xiao-Lin Zhou
- The Institute of Cardiovascular Diseases & Critical Care Unit, Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
| | - Li-Li Zhang
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hong-Mei Xue
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Qin Yang
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Guo-Wei He
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| |
Collapse
|
2
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Xu K, Feng H, Zhao R, Huang Y. Targeting Tetraspanins at Cell Interfaces: Functional Modulation and Exosome-Based Drug Delivery for Precise Disease Treatment. ChemMedChem 2025; 20:e202400664. [PMID: 39415492 DOI: 10.1002/cmdc.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Tetraspanins are key players in various physiological and pathological processes, including malignancy, immune response, fertilization, and infectious disease. Affinity ligands targeting the interactions between tetraspanins and partner proteins are promising for modulating downstream signaling pathways, thus emerging as attractive candidates for interfering related biological functions. Due to the involvement in vesicle biogenesis and cargo trafficking, tetraspanins are also regarded as exosome markers, and become molecular targets for drug loading and delivery. Given the rapid development in these areas, this minireview focuses on recent advances in design and engineering of affinity binders toward tetraspanins including CD63, CD81, and CD9. Their mechanism of actions in modulating protein interactions at cell interfaces and treatment of malignant diseases are discussed. Strategies for constructing exosome-based drug delivery platforms are also reviewed, with emphasis on the important roles of tetraspanins and the affinity ligands. Finally, challenges and future development of tetraspanin-targeting therapy and exosomal drug delivery platforms are also discussed.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zhang Y, Mou Z, Song W, He X, Yi Q, Wang Z, Mao X, Wang W, Xu Y, Shen Y, Ma P, Yu K. Sparstolonin B potentiates the antitumor activity of nanovesicle-loaded drugs by suppressing the phagocytosis of macrophages in vivo. J Nanobiotechnology 2024; 22:759. [PMID: 39696573 DOI: 10.1186/s12951-024-03001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and extruded nanovesicles (ENVs) are promising nanovesicles (NVs) for drug delivery. However, the application of these NVs is strongly hindered by their short half-life in the circulation. Macrophages (Mφs) in the liver and spleen contribute to the rapid depletion of NVs, but the underlying mechanism is unclear. METHODS By collecting the supernatant of PANC-1 cells and squeezing PANC-1 cells, EVs and ENVs derived from PANC-1 cells were prepared via ultracentrifugation. NVs were subsequently identified via western blot, particle size measurement, and electron microscopy. The distribution of NVs in mouse bodies was observed with a live animal imaging system. Liver Mφs were extracted and isolated after NVs were administered, and transcriptome profiling was applied to determine differentially expressed genes (DEGs). siRNAs targeting interested genes were designed and synthesized. In vitro experiments, Mφs were transfected with siRNA or treated with the corresponding inhibitor, after which NV uptake was recorded. Doxorubicin (DOX) was encapsulated in ENVs using an ultrasound method. PANC-1 cell-derived tumors were established in nude mice in vivo, inhibitor pretreatment or no treatment was administered before intravenous injection of ENVs-DOX, and the therapeutic efficacy of ENVs-DOX was evaluated. RESULTS NVs derived from PANC-1 cells were first prepared and identified. After intravenous injection, most NVs were engulfed by Mφs in the liver and spleen. Seven genes of interest were selected via transcriptome sequencing and validated via RT‒PCR. These results confirmed that the TLR2 signaling pathway is responsible for phagocytosis. siTLR2 and its inhibitor sparstolonin B (SpB) significantly inhibited the internalization of NVs by Mφs and downregulated the activity of the TLR2 pathway. The accumulation of ENVs-DOX in the liver was inhibited in vivo by pretreatment with SpB 40 min before intravenous injection, ultimately delaying tumor progression. CONCLUSION The TLR2 pathway plays a crucial role in the sequestration of NVs by Mφs. A novel antiphagocytic strategy in which pretreatment of mice with SpB inhibits the clearance of NVs and prolongs their half-life in vivo, thereby improving delivery efficiency, was identified.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuo Mou
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Teaching Office, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qin Yi
- The First Clinical College, Wuhan University, Wuhan, China
| | - Zhekai Wang
- The First Clinical College, Wuhan University, Wuhan, China
| | - Xietong Mao
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangtao Xu
- The First Clinical College, Wuhan University, Wuhan, China
| | - Yang Shen
- The First Clinical College, Wuhan University, Wuhan, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Youssef A, Sahgal A, Das S. Radioresistance and brain metastases: a review of the literature and applied perspective. Front Oncol 2024; 14:1477448. [PMID: 39540151 PMCID: PMC11557554 DOI: 10.3389/fonc.2024.1477448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial metastatic disease is a serious complication of cancer, treated through surgery, radiation, and targeted therapies. The central role of radiation therapy makes understanding the radioresistance of metastases a priori a key interest for prognostication and therapeutic development. Although historically defined clinic-radiographically according to tumour response, developments in new techniques for delivering radiation treatment and understanding of radioprotective mechanisms led to a need to revisit the definition of radioresistance in the modern era. Factors influencing radioresistance include tumour-related factors (hypoxia, cancer stem cells, tumour kinetics, tumour microenvironment, metabolic alterations, tumour heterogeneity DNA damage repair, non-coding RNA, exosomes, methylomes, and autophagy), host-related factors (volume effect & dose-limiting non-cancerous tissue, pathophysiology, and exosomes), technical factors, and probabilistic factors (cell cycle and random gravity of DNA damage). Influences on radioresistance are introduced and discussed in the context of brain metastases.
Collapse
Affiliation(s)
- Andrew Youssef
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Chang J, Feng Z, Li Y, Lv H, Liu S, Luo Y, Hao N, Zhao L, Liu J. Mesenchymal stem cell-derived extracellular vesicles: A novel promising neuroprotective agent for Alzheimer's disease. Biochem Pharmacol 2024; 222:116064. [PMID: 38373595 DOI: 10.1016/j.bcp.2024.116064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of neurons in the brain. However, there are no effective drugs for AD. Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs), as a new mediator of intercellular communication, are associated with low immunogenicity, low risk of tumor formation, and good safety profile. Therefore, MSCs-EVs may be a safe and attractive cell-free nanotherapeutics, offering a new perspective for AD treatment. Although preclinical studies have demonstrated that MSCs-EVs have significant neuroprotective effects, the underlying mechanism is unclear. This study aimed to: outline the diagnostic and delivery roles of MSCs-EVs for AD treatment; summarize the optimal sources and delivery methods of MSCs-EVs; provide a comprehensive review on the neuroprotective mechanisms of MSCs-EVs; explore how to enhance the neuroprotective effects of MSCs-EVs; and discuss the limitations and potential of their translation to the clinic. Therefore, this study may provide a more precise theoretical reference and practical basis for clinical research of MSCs-EVs.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zihang Feng
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Honglin Lv
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuzhen Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
7
|
Ma S, Ma B, Yang Y, Mu Y, Wei P, Yu X, Zhao B, Zou Z, Liu Z, Wang M, Deng J. Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3064-3081. [PMID: 38215277 DOI: 10.1021/acsami.3c13273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
3D printing technology offers extensive applications in tissue engineering and regenerative medicine (TERM) because it can create a three-dimensional porous structure with acceptable porosity and fine mechanical qualities that can mimic natural bone. Hydroxyapatite (HA) is commonly used as a bone repair material due to its excellent biocompatibility and osteoconductivity. Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMSCs) can regulate bone metabolism and stimulate the osteogenic differentiation of stem cells. This study has designed a functionalized bone regeneration scaffold (3D H-P-sEVs) by combining the biological activity of BMSCs-sEVs and the 3D-HA scaffold to improve bone regeneration. The scaffold utilizes the targeting of fusion peptides to increase the loading efficiency of sEVs. The composition, structure, mechanical properties, and in vitro degradation performance of the 3D H-P-sEVs scaffolds were examined. The composite scaffold demonstrated good biocompatibility, substantially increased the expression of osteogenic-related genes and proteins, and had a satisfactory bone integration effect in the critical skull defect model of rats. In conclusion, the combination of EVs and 3D-HA scaffold via fusion peptide provides an innovative composite scaffold for bone regeneration and repair, improving osteogenic performance.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, China
| | - Beibei Ma
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., No. 6 Plant West, Valley No. 1 Bio-medicine Industry Park, Beijing 102600, China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Zihao Liu
- Tianjin Zhongnuo Dental Hospital, Dingfu Building at the intersection of Nanma Road and Nankai Sanma Road in Nankai District, Tianjin 300100, China
| | - Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 5 Jingyuan Road, Shijingshan District, Beijing 100043, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
8
|
Weiskirchen R, Schröder SK, Weiskirchen S, Buhl EM, Melnik B. Isolation of Bovine and Human Milk Extracellular Vesicles. Biomedicines 2023; 11:2715. [PMID: 37893089 PMCID: PMC10603983 DOI: 10.3390/biomedicines11102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles such as exosomes are small-sized, bilayered extracellular biovesicles generated by almost every cell and released into the surrounding body fluids upon the fusion of multivesicular bodies and the plasma membrane. Based on their origin, they are enriched with a variety of biologically active components including proteins, lipids, nucleic acids, cellular metabolites, and many other constituents. They can either attach or fuse with the membrane of a target cell, or alternatively be taking up via endocytosis by a recipient cell. In particular, milk exosomes have been recently shown to be a fundamental factor supporting infant growth, health, and development. In addition, exosomes derived from different cell types have been shown to possess regenerative, immunomodulatory, and anti-inflammatory properties, suggesting that they are a potential therapeutic tool in modulating the pathogenesis of diverse diseases. Therefore, efficient protocols for the isolation of milk exosomes in a high quantity and purity are the basis for establishing clinical applications. Here, we present an easy-to-follow protocol for exosome isolation from bovine and human milk. Electron microscopic analysis and nanoparticle tracking analysis reveal that the protocols allow the isolation of highly enriched fractions of exosomes. The purified exosomes express the typical exosomal protein markers, CD81 and ALIX.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, D-52074 Aachen, Germany;
| | - Bodo Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| |
Collapse
|