1
|
Wang L, Nie F, Lu Z, Chong Y. Mechanism underlying the involvement of CXCR4/CXCL12 in diabetic wound healing and prospects for responsive hydrogel-loaded CXCR4 formulations. Front Pharmacol 2025; 16:1561112. [PMID: 40308758 PMCID: PMC12040920 DOI: 10.3389/fphar.2025.1561112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus is a prevalent chronic disease, often leading to complications, with chronic wounds being among the most challenging. Impairment of the CXCR4/CXCL12 signaling pathway, which plays a key role in cell mobilization, migration, and angiogenesis, significantly hampers the wound healing process in diabetic patients. Modulation of this pathway using CXCR4-targeted agents has shown promise in restoring wound repair capabilities. Additionally, the development of responsive hydrogels capable of adapting to external stimuli offers a powerful platform for drug delivery in chronic wound management. These hydrogels, when loaded with CXCR4 agonists or antagonists, enable controlled drug release and real-time therapeutic modulation. Integrating such hydrogels with existing wound healing strategies may provide an innovative and effective solution for overcoming the challenges associated with diabetic wound treatment.
Collapse
Affiliation(s)
- Lingli Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Xie Y, Ni X, Wan X, Xu N, Chen L, Lin C, Zheng X, Cai B, Lin Q, Ke R, Huang T, Hu X, Wang B, Shan X. KLF5 enhances CXCL12 transcription in adipose-derived stem cells to promote endothelial progenitor cells neovascularization and accelerate diabetic wound healing. Cell Mol Biol Lett 2025; 30:24. [PMID: 40038579 DOI: 10.1186/s11658-025-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have been shown to accelerate diabetic wound healing by promoting neovascularization, though the underlying mechanisms are not fully understood. This study aims to explore whether ADSCs influence endothelial progenitor cells (EPCs) function to enhance diabetic wound healing. METHODS Human adipose-derived stem cells (hADSCs) were isolated from patient adipose tissue and cultured under normal and high glucose (HG) conditions. RNA sequencing analyzed gene expression, while immunofluorescence validated findings in patient wound tissues. Mouse adipose-derived stem cells (ADSCs) from C57BL/6 mice were evaluated in vitro for their effects on EPCs under HG using EdU, Transwell, and tube formation assays. A diabetic mouse wound model was used to assess ADSCs therapeutic effects via digital imaging, histology, and immunofluorescence. Kruppel-like factor 5 (KLF5), identified via the JASPAR database, was confirmed by immunohistochemistry and immunofluorescence. KLF5 and C-X-C motif chemokine 12 (CXCL12) expression levels were measured by enzyme-linked immunosorbent assay (ELISA), western blot, and quantitative reverse transcription polymerase chain reaction (RT-qPCR), and their relationship was validated through dual-luciferase assays. RESULTS We constructed a neovascularization-related signature (NRS) comprising 75 genes on the basis of differentially expressed genes (DEGs) linked to neovascularization. GO and KEGG analyses revealed that the NRS is primarily involved in vasculature development and receptor-ligand activity. Seven hub genes (CD34, CXCL12, FGF7, FGF18, FGF1, TEK, KIT) were identified and validated. In a diabetic mouse model, CXCL12 knockdown in ADSCs reduced their ability of promoting wound healing and neovascularization. KLF5 expression was lower in patients with diabetic ulcers and diabetic mice wound tissues compared with normal tissues, while ADSCs treatment significantly increased KLF5 expression in diabetic mice wounds. Dual-luciferase reporter assays confirmed KLF5 as an upstream transcription factor of CXCL12. Additionally, knocking down KLF5 in ADSCs impaired their therapeutic effects on diabetic wound healing. In vitro, the addition of exogenous CXCL12 recombinant protein restored EPCs proliferation, migration, and vasculogenic capacity in a high glucose environment after KLF5 silencing in ADSCs. CONCLUSIONS Our findings underscore the pivotal role of KLF5 in enhancing CXCL12 transcription within ADSCs, thereby facilitating EPC-mediated neovascularization and improving diabetic wound healing. Additionally, KLF5 emerges as a promising therapeutic target for accelerating tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Yunjia Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaofen Wan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Nating Xu
- Department of Burn and Plastic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Tao Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
4
|
Liu W. The Involvement of Cysteine-X-Cysteine Motif Chemokine Receptors in Skin Homeostasis and the Pathogenesis of Allergic Contact Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1005. [PMID: 38256077 PMCID: PMC10815665 DOI: 10.3390/ijms25021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the C-X-C motif chemokine receptor (CXCR) superfamily play central roles in initiating the innate immune response in mammalian cells by orchestrating selective cell migration and immune cell activation. With its multilayered structure, the skin, which is the largest organ in the body, performs a crucial defense function, protecting the human body from harmful environmental threats and pathogens. CXCRs contribute to primary immunological defense; these receptors are differentially expressed by different types of skin cells and act as key players in initiating downstream innate immune responses. While the initiation of inflammatory responses by CXCRs is essential for pathogen elimination and tissue healing, overactivation of these receptors can enhance T-cell-mediated autoimmune responses, resulting in excessive inflammation and the development of several skin disorders, including psoriasis, atopic dermatitis, allergic contact dermatitis, vitiligo, autoimmune diseases, and skin cancers. In summary, CXCRs serve as critical links that connect innate immunity and adaptive immunity. In this article, we present the current knowledge about the functions of CXCRs in the homeostasis function of the skin and their contributions to the pathogenesis of allergic contact dermatitis and psoriasis. Furthermore, we will examine the research progress and efficacy of therapeutic approaches that target CXCRs.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|