1
|
Fang HH, Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Wu JY, Chou YY, Wang CH, Lin SJ, Chu SY, Yang C, Ou TY, Lin HY, Lin SP. Functional Independence of Taiwanese Children with Silver-Russell Syndrome. Diagnostics (Basel) 2025; 15:1109. [PMID: 40361928 PMCID: PMC12071216 DOI: 10.3390/diagnostics15091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Silver-Russell syndrome (SRS) is a genetic disorder characterized by prenatal and postnatal growth retardation. Affected individuals commonly present with low birth weight, intrauterine growth restriction, postnatal short stature, hemihypotrophy, characteristic facial features, and body asymmetry. Methods: This study includes 24 Taiwanese children with SRS aged 2 years to 13 years and 3 months who were recruited at MacKay Memorial Hospital and other Taiwan hospitals between January 2013 and December 2024. Functional independence was assessed using the Functional Independence Measure for Children (WeeFIM) to evaluate self-care, mobility, and cognition domains. Results: The mean total WeeFIM score was 106.9 ± 23.2 (range: 54-126), with mean self-care, mobility, and cognition scores of 44.4 ± 13.8 (maximum 56), 32.4 ± 5.1 (maximum 35), and 30.2 ± 6.0 (maximum 35), respectively. The results of the restricted cubic spline analysis reveal a clear positive linear correlation before school age (approximately 72 months), followed by a plateau (p for nonlinearity < 0.05). Traceable molecular data were available for thirteen participants, of whom nine (69%) had loss of methylation at chromosome 11p15 (11p15LOM), and four (31%) had maternal uniparental disomy of chromosome 7 (upd(7)mat). Of the 24 children, 46% required assistance with bathing, which was strongly correlated with self-care ability and body height. In contrast, most of the children had independence in mobility tasks such as walking and stair climbing. However, some required support in cognitive tasks, including problem-solving, comprehension, and expression. Overall, the included children reached a functional plateau later than the normative population, with the greatest delays in self-care and mobility domains. Conclusions: This study highlights that Taiwanese children with SRS require support in self-care and cognitive tasks. Functional independence in self-care and mobility domains was positively associated with body height. The WeeFIM questionnaire effectively identified strengths and limitations, emphasizing the need for individualized support in daily activities.
Collapse
Grants
- NSTC-113-2314-B-195-003, NSTC-113-2314-B-195-004, NSTC-113-2314-B-715-002, NSTC-113-2314-B-195-021, NSTC-113-2811-B-195-001, NSTC-112-2314-B-195-014-MY3, NSTC-112-2811-B-195-001, NSTC-112-2314-B-195-003, NSTC-111-2314-B-195-017, NSTC-111-2811-B-195-002, N Ministry of Science and Technology, Executive Yuan, Taiwan
Collapse
Affiliation(s)
- Hung-Hsiang Fang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; (C.-K.C.); (Y.-R.T.)
- College of Medicine, Fu-Jen Catholic University, Taipei 242, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
| | - Yuan-Rong Tu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; (C.-K.C.); (Y.-R.T.)
| | - Yun-Ting Lo
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
| | - Jun-Yi Wu
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Chung-Hsing Wang
- Division of Medical Genetics, Pediatric Endocrinology and Metabolism, China Medical University Children’s Hospital, China Medical University, Taichung 404, Taiwan;
| | - Shio-Jean Lin
- Department of Pediatrics, Genetic Counseling Center, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Shao-Yin Chu
- Department of Pediatrics, Buddhist Tzu-Chi General Hospital, Hualien 970, Taiwan;
| | - Chen Yang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Tsung-Ying Ou
- Department of Pediatrics, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; (H.-H.F.); (C.-L.L.); (H.-C.C.); (Y.-H.C.)
- International Rare Disease Center, MacKay Memorial Hospital, Taipei 104, Taiwan; (Y.-T.L.); (J.-Y.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| |
Collapse
|
2
|
Albrecht C, Rajaram N, Broche J, Bashtrykov P, Jeltsch A. Locus-Specific and Stable DNA Demethylation at the H19/ IGF2 ICR1 by Epigenome Editing Using a dCas9-SunTag System and the Catalytic Domain of TET1. Genes (Basel) 2024; 15:80. [PMID: 38254969 PMCID: PMC10815749 DOI: 10.3390/genes15010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA methylation is critically involved in the regulation of chromatin states and cell-type-specific gene expression. The exclusive expression of imprinted genes from either the maternal or the paternal allele is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). Aberrant DNA hyper- or hypomethylation at the ICR1 of the H19/IGF2 imprinting locus is characteristic for the imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), respectively. In this paper, we performed epigenome editing to induce targeted DNA demethylation at ICR1 in HEK293 cells using dCas9-SunTag and the catalytic domain of TET1. 5-methylcytosine (5mC) levels at the target locus were reduced up to 90% and, 27 days after transient transfection, >60% demethylation was still observed. Consistent with the stable demethylation of CTCF-binding sites within the ICR1, the occupancy of the DNA methylation-sensitive insulator CTCF protein increased by >2-fold throughout the 27 days. Additionally, the H19 expression was increased by 2-fold stably, while IGF2 was repressed though only transiently. Our data illustrate the ability of epigenome editing to implement long-term changes in DNA methylation at imprinting control regions after a single transient treatment, potentially paving the way for therapeutic epigenome editing approaches in the treatment of imprinting disorders.
Collapse
Affiliation(s)
| | | | | | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (C.A.)
| |
Collapse
|
3
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
4
|
Cai X, Genchev GZ, He P, Lu H, Yu G. Demographics, in-hospital analysis, and prevalence of 33 rare diseases with effective treatment in Shanghai. Orphanet J Rare Dis 2021; 16:262. [PMID: 34103049 PMCID: PMC8186176 DOI: 10.1186/s13023-021-01830-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rare diseases are ailments which impose a heavy burden on individual patients and global society as a whole. The rare disease management landscape is not a smooth one-a rare disease is quite often hard to diagnose, treat, and investigate. In China, the country's rapid economic rise and development has brought an increased focus on rare diseases. At present, there is a growing focus placed on the importance and public health priority of rare diseases and on improving awareness, definitions, and treatments. METHODS In this work we utilized clinical data from the Shanghai HIE System to characterize the status of 33 rare diseases with effective treatment in Shanghai for the time period of 2013-2016. RESULTS AND CONCLUSION First, we describe the total number of patients, year-to-year change in new patients with diagnosis in one of the target diseases and the distribution of gender and age for the top six (by patient number) diseases of the set of 33 rare diseases. Second, we describe the hospitalization burden in terms of in-hospital ratio, length of stay, and medical expenses during hospitalization. Finally, rare disease period prevalence is calculated for the rare diseases set.
Collapse
Affiliation(s)
- Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Ping He
- Shanghai Hospital Development Center, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
5
|
Fuke T, Nakamura A, Inoue T, Kawashima S, Hara KI, Matsubara K, Sano S, Yamazawa K, Fukami M, Ogata T, Kagami M. Role of Imprinting Disorders in Short Children Born SGA and Silver-Russell Syndrome Spectrum. J Clin Endocrinol Metab 2021; 106:802-813. [PMID: 33236057 PMCID: PMC7947753 DOI: 10.1210/clinem/dgaa856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND (Epi)genetic disorders associated with small-for-gestational-age with short stature (SGA-SS) include imprinting disorders (IDs). Silver-Russell syndrome (SRS) is a representative ID in SGA-SS and has heterogenous (epi)genetic causes. SUBJECTS AND METHODS To clarify the contribution of IDs to SGA-SS and the molecular and phenotypic spectrum of SRS, we recruited 269 patients with SGA-SS, consisting of 103 and 166 patients referred to us for genetic testing for SGA-SS and SRS, respectively. After excluding 20 patients with structural abnormalities detected by comparative genomic hybridization analysis using catalog array, 249 patients were classified into 3 subgroups based on the Netchine-Harbison clinical scoring system (NH-CSS), SRS diagnostic criteria. We screened various IDs by methylation analysis for differentially methylated regions (DMRs) related to known IDs. We also performed clinical analysis. RESULTS These 249 patients with SGA-SS were classified into the "SRS-compatible group" (n = 148), the "non-SRS with normocephaly or relative macrocephaly at birth group" (non-SRS group) (n = 94), or the "non-SRS with relative microcephaly at birth group" (non-SRS with microcephaly group) (n = 7). The 44.6% of patients in the "SRS-compatible group," 21.3% of patients in the "non-SRS group," and 14.3% in the "non-SRS with microcephaly group" had various IDs. Loss of methylation of the H19/IGF2:intergenic-DMR and uniparental disomy chromosome 7, being major genetic causes of SRS, was detected in 30.4% of patients in the "SRS-compatible group" and in 13.8% of patients in the "non-SRS group." CONCLUSION We clarified the contribution of IDs as (epi)genetic causes of SGA-SS and the molecular and phenotypic spectrum of SRS. Various IDs constitute underlying factors for SGA-SS, including SRS.
Collapse
Affiliation(s)
- Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Isono Hara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Correspondence and Reprint Requests: Masayo Kagami, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2–10–1 Okura, Setagaya, Tokyo 157–8535, Japan. E-mail:
| |
Collapse
|
6
|
Różdżyńska-Świątkowska A, Tylki-Szymańska A. The importance of anthropological methods in the diagnosis of rare diseases. J Pediatr Endocrinol Metab 2019; 32:311-320. [PMID: 30917104 DOI: 10.1515/jpem-2018-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Most of inborn errors of metabolism (IEMs) and rare endocrine-metabolic diseases (REMD) are rare diseases. According to the European Commission on Public Health, a rare disease is defined, based on its prevalence, as one affecting one in 2000 people. Many IEMs affect body stature, cause craniofacial abnormalities, and disturb the developmental process. Therefore, body proportion, dysmorphic characteristics, and morphological parameters must be assessed and closely monitored. This can be achieved only with the help of an anthropologist who has adequate tools. This is why the role of an anthropologist in collaboration with the physician in the diagnostic process is not to be underestimated. Clinical anthropologists contribute to assessing physical development and improve our understanding of the natural history of rare metabolic diseases. This paper presents anthropometric techniques and methods, such as analysis of demographic data, anthropometric parameters at birth, percentile charts, growth patterns, bioimpedance, somatometric profiles, craniofacial profiles, body proportion indices, and mathematical models of growth curves used in certain rare diseases. Contemporary anthropological methods play an important role in the diagnostic process of rare genetic diseases.
Collapse
Affiliation(s)
| | - Anna Tylki-Szymańska
- Department of Pediatric, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
7
|
Effect of Cyproheptadine on Weight and Growth Velocity in Children With Silver-Russell Syndrome. J Pediatr Gastroenterol Nutr 2018; 66:306-311. [PMID: 28806298 DOI: 10.1097/mpg.0000000000001708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Nutritional management of children with Silver-Russell syndrome (SRS) is crucial, especially before initiating growth hormone therapy. Since cyproheptadine (CYP) has been reported to be orexigenic, we retrospectively investigated the effects of CYP on changes in weight and height in patients with SRS. METHODS Anthropometric parameters (weight [W], length or height [H], weight on expected weight for height [W/H], and body mass index) were recorded for 34 children with SRS receiving CYP. We specifically analyzed the anthropometric parameters (expressed in median) in a group of 23 patients treated with CYP at baseline (M0-CYP) and every 3 months (M3 to M12-CYP) after the initiation of CYP treatment. RESULTS The 23 children with SRS treated by CYP only had weight stagnation during the months preceding the start of treatment. Anthropometric parameters, especially the weight, differed significantly between M0-CYP and all other times (M3, M6, M9, M12-CYP). After 1 year of treatment, a gain in overall length/height and weight was observed (W: +1.1 standard deviations from the mean [SDS]; H: +0.5 SDS). At M3, significant improvements in W/H (74.9% vs 79.3% [P = 0.01]) and body mass index (-3.4 vs -2.4 SDS [P = 0.001]) were also observed. Twenty-one patients (91%) improved their weight by at least +0.5 SDS, and 12 (52%) by at least +1 SDS. CONCLUSIONS Our results show that CYP can be effective in patients with SRS with significant improvements in growth velocity and nutritional status before initiation of growth hormone therapy. Further prospective studies are required to confirm these results.
Collapse
|
8
|
Bigoni S, Mauro A, Ferlini A, Corazzi V, Ciorba A, Aimoni C. Cochlear malformation and sensorineural hearing loss in the Silver-Russell Syndrome. Minerva Pediatr 2017; 70:638-639. [PMID: 28882028 DOI: 10.23736/s0026-4946.17.04993-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefania Bigoni
- Unit of Medical Genetics, Ferrara University Hospital, Ferrara, Italy
| | - Antonio Mauro
- Unit of Medical Genetics, Ferrara University Hospital, Ferrara, Italy
| | | | - Virginia Corazzi
- Department of Ear Nose and Throat and Audiology, Ferrara University Hospital, Ferrara, Italy
| | - Andrea Ciorba
- Department of Ear Nose and Throat and Audiology, Ferrara University Hospital, Ferrara, Italy -
| | - Claudia Aimoni
- Department of Ear Nose and Throat and Audiology, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
9
|
Luk HM, Ivan Lo FM, Sano S, Matsubara K, Nakamura A, Ogata T, Kagami M. Silver-Russell syndrome in a patient with somatic mosaicism for upd(11)mat identified by buccal cell analysis. Am J Med Genet A 2016; 170:1938-41. [PMID: 27150791 PMCID: PMC5084779 DOI: 10.1002/ajmg.a.37679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Ho-Ming Luk
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, China
| | - Fai-Man Ivan Lo
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, China
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
10
|
Gede LB, Hahnemann JMD, Tümer Z, Brøndum-Nielsen K, Grønskov K. Feasibility study on the use of methylation-specific MLPA for the 11p15 region on prenatal samples. Prenat Diagn 2015; 36:100-3. [PMID: 26590364 DOI: 10.1002/pd.4752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Lene Bjerring Gede
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Johanne M D Hahnemann
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karen Brøndum-Nielsen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
11
|
Marsaud C, Rossignol S, Tounian P, Netchine I, Dubern B. Prevalence and management of gastrointestinal manifestations in Silver-Russell syndrome. Arch Dis Child 2015; 100:353-8. [PMID: 25700540 DOI: 10.1136/archdischild-2013-305864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Silver-Russell syndrome (SRS) is an imprinted disorder characterised by intrauterine growth retardation, relative macrocephaly, failure to thrive, typical facial phenotype and frequent body asymmetry. Feeding difficulties are frequently noted, but no study described evolution of gastrointestinal signs during infancy and their management in SRS. The aim of this study was to describe these abnormalities in a large cohort of children with SRS. DESIGN We included 75 patients (median age 24.3 months (5.1-135.2)) in the study. We retrospectively analysed nutritional status before growth hormone therapy, the frequency of gastrointestinal signs, such as gastroesophageal reflux (GER), vomiting, constipation and feeding difficulties, and nutritional management. RESULTS Maternal uniparental disomy for chromosome 7 was found in 10 patients and 11p15 hypomethylation in 65 patients. Malnutrition (defined as a weight/expected weight for height ratio <80%) was detected in 70% of the children. Gastrointestinal signs were found in 77%, including severe vomiting before the age of 1 year in 50% of cases, persistent vomiting from the age of 1 year in 29% of cases and constipation in 20% of cases. Severe GER was diagnosed in 55% of children by 24 h oesophageal pH-metry. Feeding difficulties were described in 65% of cases, with indications for dietary enrichment in 49%. Enteral nutrition by gastrostomy was indicated in 22% of cases. CONCLUSIONS Digestive signs (GER, constipation) and malnutrition are frequent in children with SRS. The systematic exploration and management of these signs are crucial to improve the nutritional status of these children before initiating growth hormone therapy.
Collapse
Affiliation(s)
- Céline Marsaud
- Nutrition et Gastroentérologie Pédiatrique, AP-HP, Hôpital Armand-Trousseau, Paris, France
| | - Sylvie Rossignol
- AP-HP, Hôpital Armand-Trousseau, Explorations Fonctionnelles Endocriniennes, INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Université Pierre et Marie Curie-Paris 6, Institut National de la Sante´́et de la Recherche Médicale U 515, Paris, France
| | - Patrick Tounian
- Nutrition et Gastroentérologie Pédiatrique, AP-HP, Hôpital Armand-Trousseau, Paris, France Institut de Cardiométabolisme et Nutrition (ICAN), INSERM UMRS U872 (Eq7) Nutriomique, Université Pierre et Marie Curie-Paris 6, Centre de Recherche des Cordeliers, Paris, France
| | - Irène Netchine
- AP-HP, Hôpital Armand-Trousseau, Explorations Fonctionnelles Endocriniennes, INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Université Pierre et Marie Curie-Paris 6, Institut National de la Sante´́et de la Recherche Médicale U 515, Paris, France
| | - Béatrice Dubern
- Nutrition et Gastroentérologie Pédiatrique, AP-HP, Hôpital Armand-Trousseau, Paris, France Institut de Cardiométabolisme et Nutrition (ICAN), INSERM UMRS U872 (Eq7) Nutriomique, Université Pierre et Marie Curie-Paris 6, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
12
|
Heckmann D, Urban C, Weber K, Kannenberg K, Binder G. Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation. Clin Epigenetics 2015; 7:5. [PMID: 25657826 PMCID: PMC4318184 DOI: 10.1186/s13148-014-0038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022] Open
Abstract
Background The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were analyzed. Cell proliferation, IGF-II secretion, and IGF2 and H19 expression were measured, and a microarray expression analysis was performed. Results Single-cell expansion established severely ICR1 hypomethylated clones (SRShypo) and normomethylated clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the quantitative real-time PCR (qRT-PCR) assay, whereas H19 expression was detectable, without differences between fibroblast clones. Cell count-related IGF-II release was comparable in SRShypo and Cnormo supernatants. Cell proliferation was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis. Conclusions The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-014-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doreen Heckmann
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Christina Urban
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Karin Weber
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Kai Kannenberg
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To review the recent advances in the clinical and molecular characterization of primordial dwarfism, an extreme growth deficiency disorder that has its onset during embryonic development and persists throughout life. RECENT FINDINGS The last decade has witnessed an unprecedented acceleration in the discovery of genes mutated in primordial dwarfism, from one gene to more than a dozen genes. These genetic discoveries have confirmed the notion that primordial dwarfism is caused by defects in basic cellular processes, most notably centriolar biology and DNA damage response. Fortunately, the increasing number of reported clinical primordial dwarfism subtypes has been accompanied by more accurate molecular classification. SUMMARY Qualitative defects of centrioles with resulting abnormal mitosis dynamics, reduced proliferation, and increased apoptosis represent the predominant molecular pathogenic mechanism in primordial dwarfism. Impaired DNA damage response is another important mechanism, which we now know is not mutually exclusive to abnormal centrioles. Molecular characterization of primordial dwarfism is helping families by enabling more reproductive choices and may pave the way for the future development of therapeutics.
Collapse
Affiliation(s)
- Fowzan S Alkuraya
- aDepartment of Genetics, King Faisal Specialist Hospital and Research Center bDepartment of Anatomy and Cell Biology, College of Medicine, Alfasial University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Kagami M, Mizuno S, Matsubara K, Nakabayashi K, Sano S, Fuke T, Fukami M, Ogata T. Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell Syndrome-compatible phenotype. Eur J Hum Genet 2014; 23:1062-7. [PMID: 25351781 PMCID: PMC4795120 DOI: 10.1038/ejhg.2014.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
Maternal uniparental disomy 14 (UPD(14)mat) and related (epi)genetic aberrations affecting the 14q32.2 imprinted region result in a clinically recognizable condition which is recently referred to as Temple Syndrome (TS). Phenotypic features in TS include pre- and post-natal growth failure, prominent forehead, and feeding difficulties that are also found in Silver–Russell Syndrome (SRS). Thus, we examined the relevance of UPD(14)mat and related (epi)genetic aberrations to the development of SRS in 85 Japanese patients who satisfied the SRS diagnostic criteria proposed by Netchine et al and had neither epimutation of the H19-DMR nor maternal uniparental disomy 7. Pyrosequencing identified hypomethylation of the DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the MEG3-DMR in two cases. In both cases, microsatellite analysis showed biparental transmission of the homologs of chromosome 14, with no evidence for somatic mosaicism with full or segmental maternal isodisomy involving the imprinted region. FISH and array comparative genomic hybridization revealed neither deletion of the two DMRs nor discernible copy number alteration in the 14q32.2 imprinted region. Methylation patterns were apparently normal in other six disease-associated DMRs. In addition, a thorough literature review revealed a considerable degree of phenotypic overlap between SRS and TS, although body asymmetry was apparently characteristic of SRS. The results indicate the occurrence of epimutation affecting the IG-DMR and the MEG3-DMR in the two cases, and imply that UPD(14)mat and related (epi)genetic aberrations constitute a rare but important underlying factor for SRS.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- 1] Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan [2] Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Inoue K, Natsuyama T, Miyaoka H. Case report of schizophrenia in adolescent with Russell-Silver syndrome. Psychiatry Clin Neurosci 2014; 68:582. [PMID: 24521140 DOI: 10.1111/pcn.12169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Katsuo Inoue
- Division of Intergraded Psychosocial Care in Community and Child Psychiatry, Department of Psychiatry
| | | | | |
Collapse
|
16
|
Shi X, Chen S, Zheng H, Wang L, Wu Y. Abnormal DNA Methylation of Imprinted Loci in Human Preimplantation Embryos. Reprod Sci 2014; 21:978-983. [PMID: 24406788 DOI: 10.1177/1933719113519173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the epigenetic risk linked to assisted reproductive technology (ART) at single-embryo level by analyzing the methylation status of imprinted H19, PEG1, and KvDMR1 in human preimplantation embryos. METHODS A total of 254 human day 3 embryos produced by ART procedures were collected. All embryos were normally fertilized but unsuitable for transfer or freezing due to poor quality. Pyrosequencing with confirmatory routine bisulfite sequencing were used to determine the DNA methylation patterns of H19 differentially methylated region (DMR) in 63 embryos, PEG1 DMR in 65 embryos, and KvDMR1 in 67 embryos. RESULTS Aberrant methylation patterns were found in 8.0% embryos at H19 DMR, 16.9% embryos at PEG1 DMR, and 10.4% embryos at KvDMR1. No methylation errors were found in corresponding sperm samples. CONCLUSIONS We hypothesized that the use of poor-quality embryos may increase the risk of imprinting defects because they might have methylation errors.
Collapse
Affiliation(s)
- Xiaoyun Shi
- Departments of reproductive Medicine and Obstetrics and Gynecology, The Second People's Hospital of Guiyang, Guiyang, People's Republic of China
| | - Shiling Chen
- Department of Obstetrics and Gynecology, Center for reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haiyan Zheng
- Department of Obstetrics and Gynecology, Center for reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Lele Wang
- Department of Obstetrics and Gynecology, Center for reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yaqin Wu
- Department of Obstetrics and Gynecology, Center for reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Anaesthesia for orphan disease: management of an infant with Silver-Russell syndrome. Eur J Anaesthesiol 2013; 31:336-8. [PMID: 24276373 DOI: 10.1097/eja.0000000000000013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Fuke T, Mizuno S, Nagai T, Hasegawa T, Horikawa R, Miyoshi Y, Muroya K, Kondoh T, Numakura C, Sato S, Nakabayashi K, Tayama C, Hata K, Sano S, Matsubara K, Kagami M, Yamazawa K, Ogata T. Molecular and clinical studies in 138 Japanese patients with Silver-Russell syndrome. PLoS One 2013; 8:e60105. [PMID: 23533668 PMCID: PMC3606247 DOI: 10.1371/journal.pone.0060105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies have revealed relative frequency and characteristic phenotype of two major causative factors for Silver-Russell syndrome (SRS), i.e. epimutation of the H19-differentially methylated region (DMR) and uniparental maternal disomy 7 (upd(7)mat), as well as multilocus methylation abnormalities and positive correlation between methylation index and body and placental sizes in H19-DMR epimutation. Furthermore, rare genomic alterations have been found in a few of patients with idiopathic SRS. Here, we performed molecular and clinical findings in 138 Japanese SRS patients, and examined these matters. Methodology/Principal Findings We identified H19-DMR epimutation in cases 1–43 (group 1), upd(7)mat in cases 44–52 (group 2), and neither H19-DMR epimutation nor upd(7)mat in cases 53–138 (group 3). Multilocus analysis revealed hyper- or hypomethylated DMRs in 2.4% of examined DMRs in group 1; in particular, an extremely hypomethylated ARHI-DMR was identified in case 13. Oligonucleotide array comparative genomic hybridization identified a ∼3.86 Mb deletion at chromosome 17q24 in case 73. Epigenotype-phenotype analysis revealed that group 1 had more reduced birth length and weight, more preserved birth occipitofrontal circumference (OFC), more frequent body asymmetry and brachydactyly, and less frequent speech delay than group 2. The degree of placental hypoplasia was similar between the two groups. In group 1, the methylation index for the H19-DMR was positively correlated with birth length and weight, present height and weight, and placental weight, but with neither birth nor present OFC. Conclusions/Significance The results are grossly consistent with the previously reported data, although the frequency of epimutations is lower in the Japanese SRS patients than in the Western European SRS patients. Furthermore, the results provide useful information regarding placental hypoplasia in SRS, clinical phenotypes of the hypomethylated ARHI-DMR, and underlying causative factors for idiopathic SRS.
Collapse
Affiliation(s)
- Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - Toshiro Nagai
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Yoko Miyoshi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Tatsuro Kondoh
- Division of Developmental Disability, Misakaenosono Mutsumi Developmental, Medical, and Welfare Center, Isahaya, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Seiji Sato
- Department of Pediatrics, Saitama Municipal Hospital, Saitama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinichiro Sano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- * E-mail:
| |
Collapse
|
19
|
Shi X, Chen S, Zheng H, Wang L, Wu Y. Aberrant DNA methylation of imprinted loci in human in vitro matured oocytes after long agonist stimulation. Eur J Obstet Gynecol Reprod Biol 2013; 167:64-8. [DOI: 10.1016/j.ejogrb.2012.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/18/2012] [Accepted: 10/30/2012] [Indexed: 11/27/2022]
|
20
|
Abstract
Russell-Silver syndrome is a genetic disorder the inheritance pattern of which is mostly sporadic. Some of the features of the syndrome are present at birth, and others appear in later years. The main clinical features include low birth weight, poor growth postnatally, short height, and discrepancies in size between the two sides of the body Abu-Amera et al. (2008), Binder et al. (2011). There is no statistical significant difference in prevalence between males and females. We report a case of Russell-Silver syndrome with intrauterine and postnatal growth retardation, triangular face, and body asymmetry, in addition to torticollis as a novel manifestation. In neck sonography, we found asymmetry of sternocleidomastoid muscles. In conclusion, we describe torticollis as a presentation of Russell-Silver syndrome.
Collapse
|
21
|
Custodio RJ, do Carmo Custodio VI, Scrideli CA, Sader Milani SL, Cervi MC, Cupo P, Martinelli CE. Impact of hypoxia on IGF-I, IGF-II, IGFBP-3, ALS and IGFBP-1 regulation and on IGF1R gene expression in children. Growth Horm IGF Res 2012; 22:186-191. [PMID: 22901623 DOI: 10.1016/j.ghir.2012.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 07/03/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Hypoxia is one of many factors involved in the regulation of the IGF system. However, no information is available regarding the regulation of the IGF system by acute hypoxia in humans. OBJECTIVE The aim of this study was to evaluate the effect of acute hypoxia on the IGF system of children. DESIGN Twenty-seven previously health children (14 boys and 13 girls) aged 15 days to 9.5 years were studied in two different situations: during a hypoxemic state (HS) due to acute respiratory distress and after full recovery to a normoxemic state (NS). In these two situations oxygen saturation was assessed with a pulse-oximeter and blood samples were collected for serum IGF-I, IGF-II, IGFBP-1, IGFBP-3, ALS and insulin determination by ELISA; fluoroimmunometric assay determination for GH and also for IGF1R gene expression analysis in peripheral lymphocytes by quantitative real-time PCR. Data were paired and analyzed by the Wilcoxon non-parametric test. RESULTS Oxygen saturation was significantly lower during HS than in NS (P<0.0001). IGF-I and IGF-II levels were lower during HS than in NS (P<0.0001 and P=0.0004, respectively). IGFBP-3 levels were also lower in HS than in NS (P=0.0002) while ALS and basal GH levels were higher during HS (P=0.0015 and P=0.014, respectively). Moreover, IGFBP-1 levels were higher during HS than in NS (P=0.004). No difference was found regarding insulin levels. The expression of IGF1R mRNA as 2(-ΔΔCT) was higher during HS than in NS (P=0.03). CONCLUSION The above results confirm a role of hypoxia in the regulation of the IGF system also in humans. This effect could be direct on the liver and/or mediated by GH and it is not restricted to the hepatocytes but involves other cell lines. During acute hypoxia a combination of alterations usually associated with reduced IGF action was observed. The higher expression of IGF1R mRNA may reflect an up-regulation of the transcriptional process.
Collapse
Affiliation(s)
- Rodrigo José Custodio
- Department of Paediatrics, School of Medicine of Ribeirão Preto, University of São Paulo, University Hospital, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
IGF2/H19 hypomethylation is tissue, cell, and CpG site dependent and not correlated with body asymmetry in adolescents with Silver-Russell syndrome. Clin Epigenetics 2012; 4:15. [PMID: 22989232 PMCID: PMC3523983 DOI: 10.1186/1868-7083-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth failure and frequent body asymmetry. Half of the patients with SRS carry a DNA hypomethylation of the imprinting center region 1 (ICR1) of the insulin-like growth factor 2 (IGF2)/H19 locus, and the clinical phenotype is most severe in these patients. We aimed to elucidate the epigenetic basis of asymmetry in SRS and the cellular consequences of the ICR1 hypomethylation. Results The ICR1 methylation status was analyzed in blood and in addition in buccal smear probes and cultured fibroblasts obtained from punch biopsies taken from the two body halves of 5 SRS patients and 3 controls. We found that the ICR1 hypomethylation in SRS patients was stronger in blood leukocytes and oral mucosa cells than in fibroblasts. ICR1 CpG sites were affected differently. The severity of hypomethylation was not correlated to body asymmetry. IGF2 expression and IGF-II secretion of fibroblasts were not correlated to the degree of ICR1 hypomethylation. SRS fibroblasts responded well to stimulation by recombinant human IGF-I or IGF-II, with proliferation rates comparable with controls. Clonal expansion of primary fibroblasts confirmed the complexity of the cellular mosaicism. Conclusions We conclude that the ICR1 hypomethylation SRS is tissue, cell, and CpG site specific. The correlation of the ICR1 hypomethylation to IGF2 and H19 expression is not strict, may depend on the investigated tissue, and may become evident only in case of more severe methylation defects. The body asymmetry in juvenile SRS patients is not related to a corresponding ICR1 hypomethylation gradient, rendering more likely an intrauterine origin of asymmetry. Overall, it may be instrumental to consider not only the ICR1 methylation status as decisive for IGF2/H19 expression regulation.
Collapse
|
23
|
Kannenberg K, Urban C, Binder G. Increased incidence of aberrant DNA methylation within diverse imprinted gene loci outside of IGF2/H19 in Silver-Russell syndrome. Clin Genet 2012; 81:366-77. [DOI: 10.1111/j.1399-0004.2012.01844.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012; 18:171-97. [PMID: 22267841 PMCID: PMC3282574 DOI: 10.1093/humupd/dmr047] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The subject of epigenetic risk of assisted reproduction treatment (ART), initiated by reports on an increase of children with the Beckwith–Wiedemann imprinting disorder, is very topical. Hence, there is a growing literature, including mouse studies. METHODS In order to gain information on transgenerational epigenetic inheritance and epigenetic effects induced by ART, literature databases were searched for papers on this topic using relevant keywords. RESULTS At the level of genomic imprinting involving CpG methylation, ART-induced epigenetic defects are convincingly observed in mice, especially for placenta, and seem more frequent than in humans. Data generally provide a warning as to the use of ovulation induction and in vitro culture. In human sperm from compromised spermatogenesis, sequence-specific DNA hypomethylation is observed repeatedly. Transmittance of sperm and oocyte DNA methylation defects is possible but, as deduced from the limited data available, largely prevented by selection of gametes for ART and/or non-viability of the resulting embryos. Some evidence indicates that subfertility itself is a risk factor for imprinting diseases. As in mouse, physiological effects from ART are observed in humans. In the human, indications for a broader target for changes in CpG methylation than imprinted DNA sequences alone have been found. In the mouse, a broader range of CpG sequences has not yet been studied. Also, a multigeneration study of systematic ART on epigenetic parameters is lacking. CONCLUSIONS The field of epigenetic inheritance within the lifespan of an individual and between generations (via mitosis and meiosis, respectively) is growing, driven by the expansion of chromatin research. ART can induce epigenetic variation that might be transmitted to the next generation.
Collapse
Affiliation(s)
- A P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Fuke-Sato T, Yamazawa K, Nakabayashi K, Matsubara K, Matsuoka K, Hasegawa T, Dobashi K, Ogata T. Mosaic upd(7)mat in a patient with Silver-Russell syndrome. Am J Med Genet A 2012; 158A:465-8. [PMID: 22246578 DOI: 10.1002/ajmg.a.34404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 11/09/2011] [Indexed: 11/09/2022]
|