1
|
Athonvarangkul D, Wysolmerski JJ. Crosstalk within a brain-breast-bone axis regulates mineral and skeletal metabolism during lactation. Front Physiol 2023; 14:1121579. [PMID: 36875035 PMCID: PMC9979219 DOI: 10.3389/fphys.2023.1121579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
To support the increased calcium demands for milk production during lactation, a dramatic and reversible physiological response occurs to alter bone and mineral metabolism. This coordinated process involves a brain-breast-bone axis that integrates hormonal signals that allow for adequate calcium delivery to milk yet also protects the maternal skeletal from excessive bone loss or decreases in bone quality or function. Here, we review the current knowledge on the crosstalk between the hypothalamus, mammary gland, and skeleton during lactation. We discuss the rare entity of pregnancy and lactation associated osteoporosis and consider how the physiology of bone turnover in lactation may impact the pathophysiology of postmenopausal osteoporosis. Further understanding of the regulators of bone loss during lactation, particularly in humans, may provide insights into new therapies for osteoporosis and other diseases of excess bone loss.
Collapse
Affiliation(s)
- Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
2
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
3
|
Beasley HK, Widatalla SE, Whalen DS, Williams SD, Korolkova OY, Namba C, Pratap S, Ochieng J, Sakwe AM. Identification of MAGEC2/CT10 as a High Calcium-Inducible Gene in Triple-Negative Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:816598. [PMID: 35355564 PMCID: PMC8959981 DOI: 10.3389/fendo.2022.816598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
The expression of the melanoma/cancer-testis antigen MAGEC2/CT10 is restricted to germline cells, but like most cancer-testis antigens, it is frequently upregulated in advanced breast tumors and other malignant tumors. However, the physiological cues that trigger the expression of this gene during malignancy remain unknown. Given that malignant breast cancer is often associated with skeletal metastasis and co-morbidities such as cancer-induced hypercalcemia, we evaluated the effect of high Ca2+ on the calcium-sensing receptor (CaSR) and potential mechanisms underlying the survival of triple-negative breast cancer (TNBC) cells at high Ca2+. We show that chronic exposure of TNBC cells to high Ca2+ decreased the sensitivity of CaSR to Ca2+ but stimulated tumor cell growth and migration. Furthermore, high extracellular Ca2+ also stimulated the expression of early response genes such as FOS/FOSB and a unique set of genes associated with malignant tumors, including MAGEC2. We further show that the MAGEC2 proximal promoter is Ca2+ inducible and that FOS/FOSB binds to this promoter in a Ca2+- dependent manner. Finally, downregulation of MAGEC2 strongly inhibited the growth of TNBC cells in vitro. These data suggest for the first time that MAGEC2 is a high Ca2+ inducible gene and that aberrant expression of MAGEC2 in malignant TNBC tissues is at least in part mediated by an increase in circulating Ca2+via the AP-1 transcription factor.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Sarrah E. Widatalla
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Diva S. Whalen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Stephen D. Williams
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Clementine Namba
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Josiah Ochieng
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Amos M. Sakwe,
| |
Collapse
|
4
|
Patel V, Klootwijk E, Whiting G, Bockenhauer D, Siew K, Walsh S, Bleich M, Himmerkus N, Jaureguiberry G, Issler N, Godovac‐Zimmermann J, Kleta R, Wheeler J. Quantification of FAM20A in human milk and identification of calcium metabolism proteins. Physiol Rep 2021; 9:e15150. [PMID: 34957696 PMCID: PMC8711012 DOI: 10.14814/phy2.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues. FAM20A is a low-abundant protein that is difficult to detect in biofluids such as blood, saliva, and urine. Thus, we speculated the abundance of FAM20A to be high in human milk, since the secretory epithelium of lactating mammary tissue is involved in the secretion of highly concentrated calcium. Therefore, the primary aim of this research is to describe the processes/methodology taken to quantify FAM20A in human milk and identify other proteins involved in calcium metabolism. METHOD This study used mass spectrometry-driven quantitative proteomics: (1) to quantify FAM20A in human milk of three women and (2) to identify proteins associated with calcium regulation by bioinformatic analyses on whole and milk fat globule membrane fractions. RESULTS Shotgun MS/MS driven proteomics identified FAM20A in whole milk, and subsequent analysis using targeted proteomics also successfully quantified FAM20A in all samples. Combination of sample preparation, fractionation, and LC-MS/MS proteomics analysis generated 136 proteins previously undiscovered in human milk; 21 of these appear to be associated with calcium metabolism. CONCLUSION Using mass spectrometry-driven proteomics, we successfully quantified FAM20A from transitional to mature milk and obtained a list of proteins involved in calcium metabolism. Furthermore, we show the value of using a combination of both shotgun and targeted driven proteomics for the identification of this low abundant protein in human milk.
Collapse
Affiliation(s)
- Vaksha Patel
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Gail Whiting
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| | | | - Keith Siew
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Stephen Walsh
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Markus Bleich
- Institute of PhysiologyUniversity of KielKielGermany
| | | | | | - Naomi Issler
- Department of Renal MedicineUniversity College LondonLondonUK
| | | | - Robert Kleta
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Jun Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory AgencyHertfordshireUK
| |
Collapse
|
5
|
Connelly MK, Henschel SR, Kuehnl JM, Cheng AA, Nashold F, Hernandez LL. Physiological adaptations in early-lactation cows result in differential responses to calcium perturbation relative to nonlactating, nonpregnant cows. J Dairy Sci 2021; 105:904-920. [PMID: 34696912 DOI: 10.3168/jds.2021-20890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
The peripartal cow experiences a rapid change in calcium metabolism at the onset of lactation. Research has focused on understanding how mammary-derived factors, such as serotonin (5HT) and parathyroid hormone like hormone (PTHLH), aid in coordinating these calcemic adaptations to lactation. Therefore, the aim of our study was to determine how induced subclinical hypocalcemia influences physiological responses, specifically the 5HT-PTHLH-Ca axis, in lactating and nonlactating dairy cows to elucidate the potential contribution of the mammary gland. Twelve nonlactating, nonpregnant (NL) multiparous Holstein cows and 12 early-lactation (EL) multiparous Holstein cows received either (1) a continuous 24-h intravenous solution of 0.9% NaCl or (2) 5% ethylene glycol tetraacetic acid (EGTA) solution in 0.9% NaCl (n = 6 EL, n = 6 NL per treatment) with the aim of maintaining blood ionized calcium (iCa) less than 1.0 mM. Mammary gland biopsies were taken immediately after and 48 h after termination of infusion. Blood was sampled hourly during infusion and 4, 8, 12, 24, 48, and 72 h after termination of infusion. Infusion of EGTA successfully decreased blood iCa concentrations. However, EL EGTA-infused cows required increased rates of EGTA infusion to maintain iCa below 1.0 mM. Circulating and mammary serotonin concentrations were increased in EL relative to NL cows, with no difference as a result of EGTA infusion. Mammary PTHLH expression was increased in EL cows, with highest expression observed in EL EGTA-infused cows. Collectively, these data demonstrate the robust adaptations EL cows have to maintain Ca homeostasis and the supporting roles 5HT and PTHLH may play.
Collapse
Affiliation(s)
- M K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - S R Henschel
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - J M Kuehnl
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - A A Cheng
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - F Nashold
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
6
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
7
|
Wilkens MR, Nelson CD, Hernandez LL, McArt JA. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J Dairy Sci 2020; 103:2909-2927. [DOI: 10.3168/jds.2019-17268] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
8
|
Canul-Medina G, Fernandez-Mejia C. Morphological, hormonal, and molecular changes in different maternal tissues during lactation and post-lactation. J Physiol Sci 2019; 69:825-835. [PMID: 31564033 PMCID: PMC10717399 DOI: 10.1007/s12576-019-00714-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Milk supply and quality during lactation are critical for progeny survival. Maternal tissues and metabolism, influenced by hormonal changes, undergo modification during lactation to sustain breastfeeding. Two organs that suffer essential adjustment are the mammary glands and the bone; however, renal calcium conservation and calcium absorption from the intestine are also modified. Lactation leads to a transient loss of bone minerals to provide adequate amounts of minerals, including calcium for milk production. Physiological, metabolic, and molecular changes in different tissues participate in providing nutrients for milk production. After weaning, the histological, metabolic, and hormonal modifications that take place in lactation are reverted, and bone remineralization is a central function at this time. This study focuses on the hormonal, metabolic, molecular, and tissue modifications that occur in mammary glands, bone, intestine, and kidneys in the mother during lactation and post-weaning periods.
Collapse
Affiliation(s)
- Gustavo Canul-Medina
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Av. del Iman #1, 4th Floor, 04530, Mexico City, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Av. del Iman #1, 4th Floor, 04530, Mexico City, Mexico.
| |
Collapse
|
9
|
Miao J, Adewole D, Liu S, Xi P, Yang C, Yin Y. Tryptophan Supplementation Increases Reproduction Performance, Milk Yield, and Milk Composition in Lactating Sows and Growth Performance of Their Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5096-5104. [PMID: 31008593 DOI: 10.1021/acs.jafc.9b00446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tryptophan (Trp) can produce bioactive compounds for appetite regulation, calcium mobilization, and mammary gland homeostasis via a serotonin pathway. This study evaluated the effects of Trp supplementation on the reproduction performance, milk yield, and composition of lactating sows, growth performance of their piglets, and the secretion function of porcine mammary epithelial cells (PMECs). The infrared emulsion analyzer and ELISA analyses revealed that feeding sows with a 0.12% Trp addition increased ( P < 0.05) sow average daily feed intake, milk yield, milk calcium concentration, average daily gain of piglets, fatty acid synthase (FAS) and lactose synthase (LS), β-casein secretion, intracellular Ca2+ level, the expression of calcium binding protein CaM, and the activity of CaMKII. In a cellular experiment of PMECs treated with Trp, ELISA and flow cytometry analyses revealed that the pretreatment of a Trp hydroxylase inhibitor reduced ( P < 0.05) FAS and LS synthesis, the intracellular Ca2+ level, and the activity of CaMKII. In conclusion, Trp supplementation at 0.12% increased sows' reproductive performance, milk yield, and calcium concentration and piglets' growth performance. Milk yield increased by Trp was linked to 5-hydroxytryptamine-mediated synthesis of FAS, LS, and β-casein in PMECs, while the increase in calcium concentration was attributed to increasing CaM expression and CAMKII activity.
Collapse
Affiliation(s)
- Jinfeng Miao
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha , Hunan 410125 , People's Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Deborah Adewole
- Department of Animal Science and Aquaculture , Dalhousie University , Truro , Nova Scotia B2N 5E3 , Canada
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Shangxi Liu
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Chengbo Yang
- Department of Animal Science , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha , Hunan 410125 , People's Republic of China
| |
Collapse
|
10
|
Modarressi T, Levine MA, Tchou J, Khan AN. Gestational Gigantomastia Complicated by PTHrP-Mediated Hypercalcemia. J Clin Endocrinol Metab 2018; 103:3124-3130. [PMID: 30032172 DOI: 10.1210/jc.2018-01181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Gestational gigantomastia is an uncommon condition characterized by abnormal and excessive growth of breast tissue during an otherwise uncomplicated pregnancy. Gestational gigantomastia may be accompanied by hypercalcemia, which in some cases has been associated with elevated serum levels of PTHrP. The source of the PTHrP in these cases has been suggested to be the enlarged breasts. OBJECTIVE To describe the rapid resolution of hypercalcemia and normalization of serum PTHrP after elective termination of pregnancy, indicating that the placenta was the source of the PTHrP. DESIGN A retrospective analysis of clinical and biochemical data over a 2-year interval and review of literature. SETTING An academic medical center. PATIENT A 33-year-old G8P4 female who presented at week 8 of pregnancy with gestational gigantomastia and subsequently developed marked hypercalcemia at week 13. Serum levels of PTH were suppressed but circulating PTHrP was elevated. There was no history of hypercalcemia or significant breast growth during previous pregnancies. INTERVENTION Hypercalcemia was poorly responsive to IV saline, prednisone, calcitonin, and cinacalcet. She requested termination of pregnancy at week 20. RESULTS Serum levels of calcium, PTH, and PTHrP normalized within 48 hours of termination of pregnancy. CONCLUSION The rapid resolution of hypercalcemia after termination of pregnancy, despite persistent gigantomastia, provides evidence for a pathologic role of the placenta in the excess production of PTHrP, possibly through an as yet uncharacterized placenta-breast hormonal axis.
Collapse
Affiliation(s)
- Taher Modarressi
- Department of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amna N Khan
- Department of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Section of Endocrinology, Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Hernandez LL. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows. J Anim Sci 2018; 95:5711-5719. [PMID: 29293773 DOI: 10.2527/jas2017.1673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium pathway. Our data in rodents and cows indicate that serotonin and calcium are working through a unique feedback loop with PTHrP during lactation to regulate milk calcium and maternal calcium homeostasis.
Collapse
|
12
|
Campos-Verdes LM, Costa-Silva DR, da Silva-Sampaio JP, Barros-Oliveira MDC, Escórcio-Dourado CS, Martins LM, Sampaio FA, Revoredo C, Alves-Ribeiro FA, da Silva BB. Review of Polymorphism of the Calcium-Sensing Receptor Gene and Breast Cancer Risk. Cancer Invest 2018; 36:1-7. [PMID: 29504802 DOI: 10.1080/07357907.2018.1430817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymorphism of the calcium-sensing receptor gene (CaSR or CaR) has been associated with an increased risk for breast cancer. This receptor plays an important role in calcium homeostasis, and has also been detected in several tissues that are unrelated to calcium metabolism, such as the skin, brain, and breast. The calcium-sensing receptor on cellular level, it regulates cell differentiation, proliferation, cell death, and gene expression. In breast cancer cells, CaSR seems to stimulate secretion of the parathyroid hormone-related protein (PTHrP), which stimulates cellular proliferation. Likewise, some studies have supported not only an association between calcium receptor gene polymorphism and breast cancer risk, but also a higher aggressiveness and unfavorable outcomes in breast cancer, which led us to make a survey in Pubmed on the subject in the last 10 years. Thus, in the literature there is a paucity of studies on the subject and the aim of this review was to show the role of calcium-sensing receptor and its association with breast cancer risk.
Collapse
Affiliation(s)
- Larysse Maira Campos-Verdes
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil
| | - Danylo Rafhael Costa-Silva
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - João Paulo da Silva-Sampaio
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil
| | | | - Carla Solange Escórcio-Dourado
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Luana Mota Martins
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Fabiane Araújo Sampaio
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Camila Revoredo
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Francisco Adelton Alves-Ribeiro
- b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| | - Benedito Borges da Silva
- a Postgraduate Program of Health in Sciences , Federal University of Piauí , 2280 Frei Serafim Avenue, Teresina , Piauí , Brazil.,b Postgraduate Program of the Northeast Network of Biotechnology (RENORBIO) , Federal University of Piauí , Teresina , Brazil
| |
Collapse
|
13
|
The suppressive role of calcium sensing receptor in endometrial cancer. Sci Rep 2018; 8:1076. [PMID: 29348629 PMCID: PMC5773571 DOI: 10.1038/s41598-018-19286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Studies have shown that calcium sensing receptor (CaSR) is involved in the progressions of several human cancers. However, the role of CaSR in endometrial cancer remains unknown. This study provides a preliminary analysis of the CaSR effect on endometrial cancer development. Ectopic CaSR expression by lentiviral transfection (CaSR-OV) in Ishikawa cells significantly increased intracellular calcium ([Ca2+]i) levels and cell apoptosis. E-cadherin and β-catenin expression and complex formation at the membrane were increased in CaSR-OV Ishikawa cells relative to control Ishikawa cells (vector). Furthermore, CaSR-OV Ishikawa cells showed a reduced invasive potential, which was attributed to E-cadherin/β-catenin complex formation. Moreover, a reduction in CaSR expression in endometrial cancer relative to normal specimens was evident by immunohistochemistry and was positively associated with E-cadherin, but not β-catenin, expression. Furthermore, VEGFR3 was significantly down-regulated in CaSR-OV Ishikawa cells. Additionally, an immunohistochemical analysis showed that VEGFR3 was significantly increased in endometrial cancer compared with the normal endometrium and was inversely correlated with CaSR expression. However, the CaSR knockdown produced the opposite effects. These findings suggest an inhibitory role for CaSR in endometrial cancer. Therefore, reduced CaSR expression may be a suitable explanation and valuable predictor for endometrial cancer progression.
Collapse
|
14
|
Yang Y, Wang B. PTH1R-CaSR Cross Talk: New Treatment Options for Breast Cancer Osteolytic Bone Metastases. Int J Endocrinol 2018; 2018:7120979. [PMID: 30151009 PMCID: PMC6087585 DOI: 10.1155/2018/7120979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic breast cancer (BrCa) is currently incurable despite great improvements in treatment of primary BrCa. The incidence of skeletal metastases in advanced BrCa occurs up to 70%. Recent findings have established that the distribution of BrCa metastases to the skeleton is not a random process but due to the favorable microenvironment for tumor invasion and growth. The complex interplay among BrCa cells, stromal/osteoblastic cells, and osteoclasts in the osseous microenvironment creates a bone-tumor vicious cycle (a feed-forward loop) that results in excessive bone destruction and progressive tumor growth. Both the type 1 PTH receptor (PTH1R) and extracellular calcium-sensing receptor (CaSR) participate in the vicious cycle and influence the skeletal metastatic niche. Thus, this review focuses on how the PTH1R and CaSR signaling pathways interact and contribute to the pathogenesis of BrCa bone metastases. The effects of intermittent PTH and allosteric modulators of CaSR for the use of bone-anabolic agents and prevention of BrCa bone metastases constitute a proof of principle for therapeutic consideration. Understanding the interplay between PTH1R and CaSR signaling in the development of BrCa bone metastases could lead to a novel therapeutic approach to control both osteolysis and tumor burden in the bone.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Abstract
Vitamin D and calcium in the human milk is essential for the growth and the prevention of rickets in infants. In this review, we will discuss the physiology and the functions of vitamin D and calcium and the mechanisms of vitamin D and calcium transfer into the human breast milk. This review describes the recommended intake of vitamin D and calcium for infants and lactating mothers and the factors influencing the content of vitamin D and calcium in human milk. Furthermore, the measurement of vitamin D compounds and calcium in human breast milk is described in this review.
Collapse
Affiliation(s)
- Yoon Ju Bae
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, D-04103, Leipzig, Germany.
| | - Juergen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Paul-List Strasse 13-15, D-04103, Leipzig, Germany
| |
Collapse
|
16
|
Gu A, Sellamuthu R, Himes E, Childress PJ, Pelus LM, Orschell CM, Kacena MA. Alterations to maternal cortical and trabecular bone in multiparous middle-aged mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:312-318. [PMID: 29199192 PMCID: PMC5749039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES During the reproductive cycle, altered calcium homeostasis is observed due to variable demand for mineral requirements. This results in increased bone resorption during the time period leading up to parturition and subsequent lactation. During lactation, women will lose 1-3% of bone mineral density per month, which is comparable to the loss experienced on an annual basis post-menopausal. The purpose of this study was to determine the effect of parity on bone formation in middle-aged mice. METHODS Mice were mated and grouped by number of parity and compared with age matched nulliparous controls. Measurements were taken of femoral trabecular and cortical bone. Calcium, protein and alkaline phosphatase levels were also measured. RESULTS An increase in trabecular bone mineral density was observed when comparing mice that had undergone parity once to the nulliparous control. An overall decrease in trabecular bone mineral density was observed as parity increased from 1 to 5 pregnancies. No alteration was seen in cortical bone formation. No difference was observed when calcium, protein and alkaline phosphatase levels were assessed. CONCLUSIONS This study demonstrates that number of parity has an impact on trabecular bone formation in middle-aged mice, with substantial changes in bone density seen among the parous groups.
Collapse
Affiliation(s)
- Alex Gu
- George Washington School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC 20037,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202,Corresponding author: Alex Gu, George Washington School of Medicine and Health Sciences, 2300 Eye Street NW, Washington DC 20037, United States E-mail:
| | - Rajendran Sellamuthu
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, 46202
| | - Evan Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| | - Louis M. Pelus
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis IN 46202
| | - Christie M. Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, 46202
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis IN 46202
| |
Collapse
|
17
|
Nicolini A, Ferrari P, Diodati L, Carpi A. Recent Advances in Comprehending the Signaling Pathways Involved in the Progression of Breast Cancer. Int J Mol Sci 2017; 18:E2321. [PMID: 29099748 PMCID: PMC5713290 DOI: 10.3390/ijms18112321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
This review describes recent advances in the comprehension of signaling pathways involved in breast cancer progression. Calcium sensing receptor (CaSR), caveolae signaling, signaling referred to hypoxia-inducing factors and disturbances in the apoptotic machinery are related to more general biological mechanisms and are considered first. The others refer to signaling pathways of more specific biological mechanisms, namely the heparin/heparin-sulfate interactome, over-expression of miRNA-378a-5p, restriction of luminal and basal epithelial cells, fatty-acid synthesis, molecular pathways related to epithelial to mesenchimal transition (EMT), HER-2/neu gene amplification and protein expression, and the expression of other members of the epithelial growth factor receptor family. This progress in basic research is fundamental to foster the ongoing efforts that use the new genotyping technologies, and aim at defining new prognostic and predictive biomarkers for a better personalized management of breast cancer disease.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lucrezia Diodati
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
18
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
19
|
Boudot C, Hénaut L, Thiem U, Geraci S, Galante M, Saldanha P, Saidak Z, Six I, Clézardin P, Kamel S, Mentaverri R. Overexpression of a functional calcium-sensing receptor dramatically increases osteolytic potential of MDA-MB-231 cells in a mouse model of bone metastasis through epiregulin-mediated osteoprotegerin downregulation. Oncotarget 2017; 8:56460-56472. [PMID: 28915604 PMCID: PMC5593575 DOI: 10.18632/oncotarget.16999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Introduction and Aims Osteolytic bone metastases are observed in advanced cases of breast cancer. In vitro data suggest that the activity of the calcium-sensing receptor (CaSR) expressed by metastatic cells could potentiate their osteolytic potential. This study aimed to demonstrate in vivo the involvement of the CaSR in breast cancer cells osteolytic potential and to identify potential targets linked to CaSR activity. Methods and Results MDA-MB-231 stably transfected with plasmids containing either a full-length wild-type CaSR (CaSR-WT), or a functionally inactive dominant negative mutant (CaSR-DN) or an empty vector (EV) were intratibially injected into Balb/c-Nude mice. X-ray analysis performed 19 days after injection showed a dramatic increase of osteolytic lesions in mice injected with CaSR-WT-transfected cells as compared to mice injected with EV- or CaSR-DN-transfected cells. This was associated with decreased BV/TV ratio and increased tumor burden. Epiregulin, an EGF-like ligand, was identified by a DNA microarray as a possible candidate involved in CaSR-mediated osteolysis. Indeed, in vitro, CaSR overexpression increased both epiregulin expression and secretion as compared to EV- or CaSR-DN-transfected cells. Increased epiregulin expression was also detected in osteolytic bone lesions from mice injected with CaSR-WT-transfected MDA-MB-231. In vitro, exposure of osteoblastic cells (HOB and SaOS2) to exogenous epiregulin significantly decreased OPG mRNA expression. Exposure of osteoblastic cells to conditioned media prepared from CaSR-WT-transfected cells also decreased OPG expression. This effect was partially blocked after addition of an anti-epiregulin antibody. Conclusions Overexpression of a functional CaSR in metastatic breast cancer cells dramatically amplifies their osteolytic potential through epiregulin-mediated OPG downregulation.
Collapse
Affiliation(s)
- Cédric Boudot
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Lucie Hénaut
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Ursula Thiem
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Mariangela Galante
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Paulo Saldanha
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Zuzana Saidak
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Isabelle Six
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Said Kamel
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Romuald Mentaverri
- Inserm U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
20
|
Xiang W, Liao W, Yi Z, He X, Ding Y. 25-Hydroxyvitamin D-1-α-hydroxylase in apoliporotein E knockout mice: The role of protecting vascular smooth muscle cell from calcification. Biomed Pharmacother 2017; 88:971-977. [PMID: 28178628 DOI: 10.1016/j.biopha.2017.01.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 02/02/2023] Open
Abstract
Previous publications widely reported that 25-hydroxyvitamin D-1-α-hydroxylase (CYP27B1) regulated the metabolism of 25-hydroxyvitamin D3, which has a close association between altered activity of vitamin D and vascular calcification has been reported in various human diseases, including chronic kidney disease, osteoporosis and atherosclerosis. Vascular calcification is a clinically significant component of atherosclerosis and may be promoted by ROS associated inflammatory. In this study, we evaluated the effect of 25-hydroxyvitamin D-1-α-hydroxylase on the atherosclerosis disease both in apolipoprotein (apo) E-/- mice and wild-type mice. We also isolated endothelial cell (ECs) and vascular smooth muscle cells (VSMCs) in aortic from the wild type mice and apoE-/- mice respectively, then investigated that after parathyroid hormone (PTH) both of the CYP27B1 and vitamin D receptor (VDR) expressions in apoE-/-EC and apoE-/-VSMC were higher than the wide-type EC and VSMCs. However, the increased proliferation and decreased apoptosis have showed in EC and VSMC compared with the cells from apo E-/- mice. Moreover, the index associated with vascular calcification such as intracellular Ca2+ concentration and alkaline phosphatase (ALP) activity have been tested and the result suggested that the levels of the former index have improved in the apoE-/-EC and apoE-/-VSMC. We got similar conclusions under the pre-treatment with 1, 25(OH) 2D3.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Pediatrics, Hainan General Hospital, Haikou 570102, China; Department of Pediatrics, Maternal and Child Health care Hospital of Hainan Province, Haikou 570206, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Haikou 570102, China
| | - Zhuwen Yi
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiaojie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Yan Ding
- Department of Dermatology, Maternal and Child Health care Hospital of Hainan Province,15 Long Kun-Nan Road, Haikou 570206, China.
| |
Collapse
|
21
|
Aggarwal A, Kállay E. Cross Talk between the Calcium-Sensing Receptor and the Vitamin D System in Prevention of Cancer. Front Physiol 2016; 7:451. [PMID: 27803671 PMCID: PMC5067519 DOI: 10.3389/fphys.2016.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022] Open
Abstract
There is epidemiological evidence for the cancer preventive effect of dietary calcium (Ca2+) and vitamin D. This effect is strongest in colorectal cancer (CRC). The active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3), bound to its receptor, the vitamin D receptor (VDR) regulates the expression of hundreds of different genes in a cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR). The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the main processes involved in the development of various cancers, such as proliferation, differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR can induce translation of the CaSR, while the amount and activity of the CaSR affects 1,25D3 signaling. However, the complexity of the cross-talk between the CaSR and the vitamin D system goes beyond regulating similar pathways and affecting each other's expression. Our aim was to review some of the mechanisms that drive the cross-talk between the vitamin D system and the CaSR with a special focus on the interaction in CRC cells. We evaluated the molecular evidence that supports the epidemiological observation that both vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria; Department of Pediatrics/Endocrinology, School of Medicine, Stanford UniversityStanford, CA, USA
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna Vienna, Austria
| |
Collapse
|
22
|
Kim W, Wysolmerski JJ. Calcium-Sensing Receptor in Breast Physiology and Cancer. Front Physiol 2016; 7:440. [PMID: 27746743 PMCID: PMC5043011 DOI: 10.3389/fphys.2016.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in normal breast epithelial cells and in breast cancer cells. During lactation, activation of the CaSR in mammary epithelial cells increases calcium transport into milk and inhibits parathyroid hormone-related protein (PTHrP) secretion into milk and into the circulation. The ability to sense changes in extracellular calcium allows the lactating breast to actively participate in the regulation of systemic calcium and bone metabolism, and to coordinate calcium usage with calcium availability during milk production. Interestingly, as compared to normal breast cells, in breast cancer cells, the regulation of PTHrP secretion by the CaSR becomes rewired due to a switch in its G-protein usage such that activation of the CaSR increases instead of decreases PTHrP production. In normal cells the CaSR couples to Gαi to inhibit cAMP and PTHrP production, whereas in breast cancer cells, it couples to Gαs to stimulate cAMP and PTHrP production. Activation of the CaSR on breast cancer cells regulates breast cancer cell proliferation, death and migration, in part, by stimulating PTHrP production. In this article, we discuss the biology of the CaSR in the normal breast and in breast cancer, and review recent findings suggesting that the CaSR activates a nuclear pathway of PTHrP action that stimulates cellular proliferation and inhibits cell death, helping cancer cells adapt to elevated extracellular calcium levels. Understanding the diverse actions mediated by the CaSR may help us better understand lactation physiology, breast cancer progression and osteolytic bone metastases.
Collapse
Affiliation(s)
- Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
23
|
Sun F, Cao Y, Yu C, Wei X, Yao J. 1,25-Dihydroxyvitamin D3 modulates calcium transport in goat mammary epithelial cells in a dose- and energy-dependent manner. J Anim Sci Biotechnol 2016; 7:41. [PMID: 27471592 PMCID: PMC4964070 DOI: 10.1186/s40104-016-0101-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background Calcium is a vital mineral and an indispensable component of milk for ruminants. The regulation of transcellular calcium transport by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3, the active form of vitamin D) has been confirmed in humans and rodents, and regulators, including vitamin D receptor (VDR), calcium binding protein D9k (calbindin-D9k), plasma membrane Ca2+-ATPase 1b (PMCA1b), PMAC2b and Orai1, are involved in this process. However, it is still unclear whether 1,25-(OH)2D3 could stimulate calcium transport in the ruminant mammary gland. The present trials were conducted to study the effect of 1,25-(OH)2D3 supplementation and energy availability on the expression of genes and proteins related to calcium secretion in goat mammary epithelial cells. Methods An in vitro culture method for goat secreting mammary epithelial cells was successfully established. The cells were treated with different doses of 1,25-(OH)2D3 (0, 0.1, 1.0, 10.0 and 100.0 nmol/L) for calcium transport research, followed by a 3-bromopyruvate (3-BrPA, an inhibitor of glucose metabolism) treatment to determine its dependence on glucose availability. Cell proliferation ratios, glucose consumption and enzyme activities were measured with commercial kits, and real-time quantitative polymerase chain reaction (RT-qPCR), and western blots were used to determine the expression of genes and proteins associated with mammary calcium transport in dairy goats, respectively. Results 1,25-(OH)2D3 promoted cell proliferation and the expression of genes involved in calcium transport in a dose-dependent manner when the concentration did not exceed 10.0 nmol/L. In addition, 100.0 nmol/L 1,25-(OH)2D3 inhibited cell proliferation and the expression of associated genes compared with the 10.0 nmol/L treatment. The inhibition of hexokinase 2 (HK2), a rate-limiting enzyme in glucose metabolism, decreased the expression of PMCA1b and PMCA2b at the mRNA and protein levels as well as the transcription of Orai1, indicating that glucose availability was required for goat mammary calcium transport. The optimal concentration of 1,25-(OH)2D3 that facilitated calcium transport in this study was 10.0 nmol/L. Conclusions Supplementation with 1,25-(OH)2D3 influenced cell proliferation and regulated the expression of calcium transport modulators in a dose- and energy-dependent manner, thereby highlighting the role of 1,25-(OH)2D3 as an efficacious regulatory agent that produces calcium-enriched milk in ruminants when a suitable energy status was guaranteed.
Collapse
Affiliation(s)
- Feifei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Chao Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Xiaoshi Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| |
Collapse
|
24
|
Kim W, Takyar FM, Swan K, Jeong J, VanHouten J, Sullivan C, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J. Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone-Related Protein. Cancer Res 2016; 76:5348-60. [PMID: 27450451 DOI: 10.1158/0008-5472.can-15-2614] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) contributes to the development and metastatic progression of breast cancer by promoting hypercalcemia, tumor growth, and osteolytic bone metastases, but it is not known how PTHrP is upregulated in breast tumors. Here we report a central role in this process for the calcium-sensing receptor, CaSR, which enables cellular responses to changes in extracellular calcium, through studies of CaSR-PTHrP interactions in the MMTV-PymT transgenic mouse model of breast cancer and in human breast cancer cells. CaSR activation stimulated PTHrP production by breast cancer cells in vitro and in vivo Tissue-specific disruption of the casr gene in mammary epithelial cells in MMTV-PymT mice reduced tumor PTHrP expression and inhibited tumor cell proliferation and tumor outgrowth. CaSR signaling promoted the proliferation of human breast cancer cell lines and tumor cells cultured from MMTV-PyMT mice. Further, CaSR activation inhibited cell death triggered by high extracellular concentrations of calcium. The actions of the CaSR appeared to be mediated by nuclear actions of PTHrP that decreased p27(kip1) levels and prevented nuclear accumulation of the proapoptotic factor apoptosis inducing factor. Taken together, our findings suggest that CaSR-PTHrP interactions might be a promising target for the development of therapeutic agents to limit tumor cell growth in bone metastases and in other microenvironments in which elevated calcium and/or PTHrP levels contribute to breast cancer progression. Cancer Res; 76(18); 5348-60. ©2016 AACR.
Collapse
Affiliation(s)
- Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Farzin M Takyar
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Karena Swan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Catherine Sullivan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii School of Medicine, Honolulu, Hawaii
| | - Nathalie Fiaschi-Taesch
- Section of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wenhan Chang
- Endocrine Unit, San Francisco and Veteran Affairs Medical Center, University of California, San Francisco, California
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut.
| |
Collapse
|
25
|
Díaz-Soto G, Rocher A, García-Rodríguez C, Núñez L, Villalobos C. The Calcium-Sensing Receptor in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:321-369. [PMID: 27692178 DOI: 10.1016/bs.ircmb.2016.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extracellular calcium-sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations including Mg2+, amino acids, and polyamines. CaSR is the most important master controller of the extracellular Ca2+ homeostatic system being expressed at high levels in the parathyroid gland, kidney, gut and bone, where it regulates parathyroid hormone (PTH) secretion, vitamin D synthesis, and Ca2+ absorption and resorption, respectively. Gain and loss of function mutations in the CaSR are responsible for severe disturbances in extracellular Ca2+ metabolism. CaSR agonists (calcimimetics) and antagonists (calcilytics) are in use or under intense research for treatment of hyperparathyroidism secondary to kidney failure and hypocalcemia with hypercalciuria, respectively. Expression of the CaSR extends to other tissues and systems beyond the extracellular Ca2+ homeostatic system including the cardiovascular system, the airways, and the nervous system where it may play physiological functions yet to be fully understood. As a consequence, CaSR has been recently involved in different pathologies including uncontrolled blood pressure, vascular calcification, asthma, and Alzheimer's disease. Finally, the CaSR has been shown to play a critical role in cancer either contributing to bone metastasis and/or acting as a tumor suppressor in some forms of cancer (parathyroid cancer, colon cancer, and neuroblastoma) and as oncogene in others (breast and prostate cancers). Here we review the role of CaSR in health and disease in calciotropic tissues and others beyond the extracellular calcium homeostatic system.
Collapse
Affiliation(s)
- G Díaz-Soto
- Endocrinology and Nutrition, Valladolid University Hospital, Valladolid, Spain
| | - A Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C García-Rodríguez
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - L Núñez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C Villalobos
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.
| |
Collapse
|
26
|
Kovacs CS. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96:449-547. [PMID: 26887676 DOI: 10.1152/physrev.00027.2015] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During pregnancy and lactation, female physiology adapts to meet the added nutritional demands of fetuses and neonates. An average full-term fetus contains ∼30 g calcium, 20 g phosphorus, and 0.8 g magnesium. About 80% of mineral is accreted during the third trimester; calcium transfers at 300-350 mg/day during the final 6 wk. The neonate requires 200 mg calcium daily from milk during the first 6 mo, and 120 mg calcium from milk during the second 6 mo (additional calcium comes from solid foods). Calcium transfers can be more than double and triple these values, respectively, in women who nurse twins and triplets. About 25% of dietary calcium is normally absorbed in healthy adults. Average maternal calcium intakes in American and Canadian women are insufficient to meet the fetal and neonatal calcium requirements if normal efficiency of intestinal calcium absorption is relied upon. However, several adaptations are invoked to meet the fetal and neonatal demands for mineral without requiring increased intakes by the mother. During pregnancy the efficiency of intestinal calcium absorption doubles, whereas during lactation the maternal skeleton is resorbed to provide calcium for milk. This review addresses our current knowledge regarding maternal adaptations in mineral and skeletal homeostasis that occur during pregnancy, lactation, and post-weaning recovery. Also considered are the impacts that these adaptations have on biochemical and hormonal parameters of mineral homeostasis, the consequences for long-term skeletal health, and the presentation and management of disorders of mineral and bone metabolism.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
27
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
28
|
Tharmalingam S, Hampson DR. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration. Front Physiol 2016; 7:190. [PMID: 27303307 PMCID: PMC4880553 DOI: 10.3389/fphys.2016.00190] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration.
Collapse
Affiliation(s)
| | - David R Hampson
- Pharmaceutical Sciences, University of Toronto Toronto, ON, Canada
| |
Collapse
|
29
|
Haug A, Steinnes E, Harstad O, Prestløkken E, Schei I, Salbu B. Trace elements in bovine milk from different regions in Norway. ACTA AGR SCAND A-AN 2016. [DOI: 10.1080/09064702.2015.1130742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS One 2014; 9:e110190. [PMID: 25299122 PMCID: PMC4192539 DOI: 10.1371/journal.pone.0110190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022] Open
Abstract
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.
Collapse
|
31
|
|
32
|
Andrade MTS, Ciampo LAD, Ciampo IRLD, Ferraz IS, Junior FB. Breast Milk Micronutrients in Lactating Mothers from Ribeirão Preto (SP), Brazil. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.513130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Cross BM, Breitwieser GE, Reinhardt TA, Rao R. Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 2013; 306:C515-26. [PMID: 24225884 DOI: 10.1152/ajpcell.00330.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca(2+) plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca(2+) secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca(2+) regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca(2+) from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca(2+) in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.
Collapse
Affiliation(s)
- Brandie M Cross
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|