1
|
Tiso F, in 't Hout FEM, Knops R, Kroeze LI, van Rooij A, van de Loosdrecht AA, Westers TM, Langemeijer SMC, Preudhomme C, Duployez N, Fenaux P, Kosmider O, Bouscary D, de Graaf AO, Martens JHA, van der Reijden BA, Adès L, Fontenay M, Jansen JH. High levels of global hydroxymethylation predict worse overall survival in MDS patients treated with azacitidine. Hemasphere 2025; 9:e70034. [PMID: 39760001 PMCID: PMC11695669 DOI: 10.1002/hem3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
- Francesca Tiso
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Florentien E. M. in 't Hout
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Ruth Knops
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Leonie I. Kroeze
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Arno van Rooij
- Department of Laboratory Medicine, Laboratory for Genetic, Endocrine, and Metabolic DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Theresia M. Westers
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Claude Preudhomme
- Department HematologyLille University HospitalLille and INSERM UMR‐S 1277LilleFrance
| | - Nicolas Duployez
- Department HematologyLille University HospitalLille and INSERM UMR‐S 1277LilleFrance
| | - Pierre Fenaux
- Department HematologyHôpital Saint Louis, Assistance publique hôpitaux de paris, and Université de Paris CitéParisFrance
| | - Olivier Kosmider
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Didier Bouscary
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Aniek O. de Graaf
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | | | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Lionel Adès
- Department HematologyHôpital Saint Louis, Assistance publique hôpitaux de paris, and Université de Paris CitéParisFrance
| | - Michaela Fontenay
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| |
Collapse
|
2
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
3
|
An C, Xue F, Sun L, Han H, Zhang Y, Hu Y. The impact of erythroblast enucleation efficiency on the severity of anemia in patients with myelodysplastic syndrome. Cell Commun Signal 2023; 21:332. [PMID: 37986081 PMCID: PMC10658927 DOI: 10.1186/s12964-023-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Anemia is the most common manifestation in myelodysplastic syndrome (MDS) patients, but the cause of ineffective hematopoiesis is not fully understood. Enucleation is an important event in the maturation process of erythroblasts. According to a series of morphological phenotypes of the pathological development of MDS erythroblasts, we speculate that there may be enucleation disorders. To verify this hypothesis, we cultured MDS bone marrow CD34+ cells in vitro and induced erythroblast development. The results showed that erythroblast enucleation in MDS was significantly lower than that in the normal group, and the rate of enucleation was positively correlated with hemoglobin concentration. Risk stratification of MDS was performed to further analyze the differences in enucleation among the normal group, low-middle risk group and high-risk group. The results showed that the enucleation rate of the high risk group was higher than that of the low-middle risk group but still lower than that of the normal group. Moreover, the expression of pERK and pAKT in MDS erythroblasts in the high risk group was higher than that in the normal group, while the expression of pERK and pAKT in the low-middle risk group was lower than that in the normal group. Furthermore, the enucleation of MDS was positively correlated with the phosphorylation degree of ERK and AKT. In conclusion, this study reveals that the enucleation of erythroblasts is one of the possible causes of anemia in MDS. Video Abstract.
Collapse
Affiliation(s)
- Chao An
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Fumin Xue
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ling Sun
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haiyan Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yali Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yibo Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
4
|
de Sousa Coelho MDPS, Pereira IC, de Oliveira KGF, Oliveira IKF, Dos Santos Rizzo M, de Oliveira VA, Carneiro da Silva FC, Torres-Leal FL, de Castro E Sousa JM. Chemopreventive and anti-tumor potential of vitamin E in preclinical breast cancer studies: A systematic review. Clin Nutr ESPEN 2023; 53:60-73. [PMID: 36657931 DOI: 10.1016/j.clnesp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Vitamin E has been investigated for its antitumor potential, including the ability to change cancer gene pathways as well as promote antioxidant and pro-oxidant activity. OBJECTIVE Therefore, this systematic review aimed to evaluate antitumor and chemopreventive activity of different vitamin E isoforms (tocopherols and tocotrienols) through in vitro and in vivo studies. METHOD The systematic review was registered in PROSPERO (No. CRD4202126207) and the search was carried out in four electronic databases (PubMed, Science Direct, Scopus and Web of Science) in June 2021 by three independent reviewers. The search equation used was: "Supplementation" AND ("Vitamin E" OR Tocopherol OR Tocotrienol) AND "breast cancer" AND (chemotherapy OR therapy OR prevention). In vitro studies and animal models of breast cancer supplemented with tocopherol or tocotrienol vitamers, alone or in combination, were included. RESULTS The results revealed 8546 relevant studies that were initially identified in our search. After analysis, a total of 12 studies were eligible for this systematic review. All studies included animal models, and 5 of them also performed in vitro experiments on cancer cell lines. The studies performed supplementation with tocopherols, mixtures (tocopherols and tocotrienols) and synthetic vitamin E forms. There was an significant association of estradiol, dendritic cells and pterostilbene in combined therapy with vitamin E. Vitamin E delayed tumor development, reduced tumor size, proliferation, viability, expression of anti-apoptotic and cell proliferation genes, and upregulated pro-apoptotic genes, tumor suppressor genes and increased immune response. The effects on oxidative stress markers and antioxidant activity were conflicting among studies. Only one study with synthetic vitamin E reported cardiotoxicity, but it did not show vitamin E genotoxicity. CONCLUSION In conclusion, vitamin E isoforms, isolated or associated, showed antitumor and chemopreventive activity. However, due to studies heterogeneity, there is a need for further analysis to establish dose, form, supplementation time and breast cancer stage.
Collapse
Affiliation(s)
- Maria do Perpetuo Socorro de Sousa Coelho
- Laboratory of Genetical Toxicology (LAPGENIC), Center for Health Sciences, Graduate Program in Pharmaceutical Sciences - Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Kynnara Gabriella Feitosa de Oliveira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Iara Katryne Fonseca Oliveira
- Department of Nutrition, Postgraduate Program in Food and Nutrition - PPGAN, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Márcia Dos Santos Rizzo
- Department of Morphology, Health Sciences Center, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Victor Alves de Oliveira
- Department of Nutrition, Postgraduate Program in Food and Nutrition - PPGAN, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Genetical Toxicology (LAPGENIC), Center for Health Sciences, Graduate Program in Pharmaceutical Sciences - Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
5
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
6
|
Clinical, biological, and prognostic implications of SF3B1 co-occurrence mutations in very low/low- and intermediate-risk MDS patients. Ann Hematol 2021; 100:1995-2004. [PMID: 33409621 DOI: 10.1007/s00277-020-04360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
SF3B1 is a highly mutated gene in myelodysplastic syndrome (MDS) patients, related to a specific subtype and parameters of good prognosis in MDS without excess blasts. More than 40% of MDS patients carry at least two myeloid-related gene mutations but little is known about the impact of concurrent mutations on the outcome of MDS patients. In applying next-generation sequencing (NGS) with a 117 myeloid gene custom panel, we analyzed the co-occurrence of SF3B1 with other mutations to reveal their clinical, biological, and prognostic implications in very low/low- and intermediate-risk MDS patients. Mutations in addition to those of SF3B1 were present in 80.4% of patients (median of 2 additional mutations/patient, range 0-5). The most frequently mutated genes were as follows: TET2 (39.2%), DNMT3A (25.5%), SRSF2 (10.8%), CDH23 (5.9%), and ASXL1, CUX1, and KMT2D (4.9% each). The presence of at least two mutations concomitant with that of SF3B1 had an adverse impact on survival compared with those with the SF3B1 mutation and fewer than two additional mutations (median of 54 vs. 87 months, respectively: p = 0.007). The co-occurrence of SF3B1 mutations with specific genes is also linked to a dismal prognosis: SRSF2 mutations were associated with shorter overall survival (OS) than SRSF2wt (median, 27 vs. 75 months, respectively; p = 0.001), concomitant IDH2 mutations (median OS, 11 [mut] vs. 75 [wt] months; p = 0.001), BCOR mutations (median OS, 11 [mut] vs. 71 [wt] months; p = 0.036), and NUP98 and STAG2 mutations (median OS, 27 and 11 vs. 71 months, respectively; p = 0.008 and p = 0.002). Mutations in CHIP genes (TET2, DNMT3A) did not significantly affect the clinical features or outcome. Our results suggest that a more comprehensive NGS study in low-risk MDS SF3B1mut patients is essential for a better prognostic evaluation.
Collapse
|
7
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
8
|
Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019; 24:E2297. [PMID: 31234313 PMCID: PMC6630285 DOI: 10.3390/molecules24122297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.
Collapse
Affiliation(s)
- Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de San Martín, San Martín 1650, Argentina.
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina.
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
9
|
Kovrigina AM. [A revised 4 edition WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 2017: myeloid neoplasms]. Arkh Patol 2019; 80:43-49. [PMID: 30585592 DOI: 10.17116/patol20188006143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents new molecular data, the principles of the classification of myeloid neoplasms, and criteria for their diagnosis according to the new edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 2017. Current concepts of clonal hematopoiesis and models of clonal evolution are presented to characterize the common features of the molecular pathogenesis of myeloid neoplasms. There are new data and general principles of diagnosis of myeloid neoplasms: Ph-negative myeloproliferative diseases, myelodysplastic syndromes, myeloid/lymphoid neoplasms with eosinophilia and rearrangements of PDGFRA, PDGFRB, FGFR1, and PCM1-JAK2, diseases from the group of myelodysplastic/myeloproliferative diseases. Emphasis is laid on the possibilities and limitations of pathological differential diagnosis when a pathologist examines bone marrow trepanobiopsy specimens in his/her routine work.
Collapse
Affiliation(s)
- A M Kovrigina
- National Medical Research Center for Hematology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
10
|
Clonal Hematopoiesis with Oncogenic Potential (CHOP): Separation from CHIP and Roads to AML. Int J Mol Sci 2019; 20:ijms20030789. [PMID: 30759825 PMCID: PMC6387423 DOI: 10.3390/ijms20030789] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The development of leukemia is a step-wise process that is associated with molecular diversification and clonal selection of neoplastic stem cells. Depending on the number and combinations of lesions, one or more sub-clones expand/s after a variable latency period. Initial stages may develop early in life or later in adulthood and include premalignant (indolent) stages and the malignant phase, defined by an acute leukemia. We recently proposed a cancer model in which the earliest somatic lesions are often age-related early mutations detectable in apparently healthy individuals and where additional oncogenic mutations will lead to the development of an overt neoplasm that is usually a preleukemic condition such as a myelodysplastic syndrome. These neoplasms may or may not transform to overt acute leukemia over time. Thus, depending on the type and number of somatic mutations, clonal hematopoiesis (CH) can be divided into CH with indeterminate potential (CHIP) and CH with oncogenic potential (CHOP). Whereas CHIP mutations per se usually create the molecular background of a neoplastic process, CHOP mutations are disease-related or even disease-specific lesions that trigger differentiation and/or proliferation of neoplastic cells. Over time, the acquisition of additional oncogenic events converts preleukemic neoplasms into secondary acute myeloid leukemia (sAML). In the present article, recent developments in the field are discussed with a focus on CHOP mutations that lead to distinct myeloid neoplasms, their role in disease evolution, and the impact of additional lesions that can drive a preleukemic neoplasm into sAML.
Collapse
|
11
|
Leite C, Delmonico L, Alves G, Gomes RJ, Martino MR, da Silva AR, Moreira ADS, Maioli MC, Scherrer LR, Bastos EF, Irineu R, Ornellas MH. Screening of mutations in the additional sex combs like 1, transcriptional regulator, tumor protein p53, and KRAS proto-oncogene, GTPase/NRAS proto-oncogene, GTPase genes of patients with myelodysplastic syndrome. Biomed Rep 2017; 7:343-348. [PMID: 28928972 DOI: 10.3892/br.2017.965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis, different degrees of cellular dysplasia, and increased risk of progression to acute myeloid leukemia. International Prognostic Scoring System is the gold standard for MDS classification; however, patients exhibiting different clinical behaviors often coexist in the same group, indicating that the currently available scoring systems are insufficient. The genes that have recently been identified as mutated in MDS, including additional sex combs like 1, transcriptional regulator (ASXL1), tumor protein p53 (TP53), and KRAS proto-oncogene and GTPase (KRAS)/NRAS proto-oncogene, GTPase (NRAS), may contribute to a more comprehensive classification, as well as to the prognosis and progression of the disease. In the present study, the mutations in the ASXL1, TP53 and NRAS/KRAS genes in 50 patients were evaluated by sequencing genomic bone marrow DNA. Nine patients (18%) presented with at least one type of mutation. Mutations in TP53 were the most frequent in six patients (12%), followed by ASXL1 in two patients (4%) and NRAS in one patient (2%). The nine mutations were detected in patients with low- and high-risk MDS. The screening of mutations in MDS cases contributes to the application of personalized medicine.
Collapse
Affiliation(s)
- Carolina Leite
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Romario José Gomes
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Mariana Rodrigues Martino
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Rodrigues da Silva
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Aline Dos Santos Moreira
- Bioinformatics and Functional Genomic Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Christina Maioli
- Haematology Service, Pedro Ernesto University Hospital, Rio de Janeiro 20550-170, Brazil
| | - Luciano Rios Scherrer
- Department of Engineering and Production, Kennedy Faculty, Belo Horizonte 31535-040, Brazil
| | - Elenice Ferreira Bastos
- Department of Medical Genetic, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250-020, Brazil
| | - Roberto Irineu
- Pedro II School, Realengo II Campus, Rio de Janeiro 21710-261, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
12
|
Valent P, Orazi A, Steensma DP, Ebert BL, Haase D, Malcovati L, van de Loosdrecht AA, Haferlach T, Westers TM, Wells DA, Giagounidis A, Loken M, Orfao A, Lübbert M, Ganser A, Hofmann WK, Ogata K, Schanz J, Béné MC, Hoermann G, Sperr WR, Sotlar K, Bettelheim P, Stauder R, Pfeilstöcker M, Horny HP, Germing U, Greenberg P, Bennett JM. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget 2017; 8:73483-73500. [PMID: 29088721 PMCID: PMC5650276 DOI: 10.18632/oncotarget.19008] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of myeloid neoplasms characterized by peripheral cytopenia, dysplasia, and a variable clinical course with about 30% risk to transform to secondary acute myeloid leukemia (AML). In the past 15 years, diagnostic evaluations, prognostication, and treatment of MDS have improved substantially. However, with the discovery of molecular markers and advent of novel targeted therapies, new challenges have emerged in the complex field of MDS. For example, MDS-related molecular lesions may be detectable in healthy individuals and increase in prevalence with age. Other patients exhibit persistent cytopenia of unknown etiology without dysplasia. Although these conditions are potential pre-phases of MDS they may also transform into other bone marrow neoplasms. Recently identified molecular, cytogenetic, and flow-based parameters may add in the delineation and prognostication of these conditions. However, no generally accepted integrated classification and no related criteria are as yet available. In an attempt to address this challenge, an international consensus group discussed these issues in a working conference in July 2016. The outcomes of this conference are summarized in the present article which includes criteria and a proposal for the classification of pre-MDS conditions as well as updated minimal diagnostic criteria of MDS. Moreover, we propose diagnostic standards to delineate between ´normal´, pre-MDS, and MDS. These standards and criteria should facilitate diagnostic and prognostic evaluations in clinical studies as well as in clinical practice.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Detlef Haase
- Clinic of Hematology and Medical Oncology, Universitymedicine Göttingen, Göttingen, Germany
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Arjan A van de Loosdrecht
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Theresia M Westers
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | - Alberto Orfao
- Servicio Central de Citometría, Centro de Investigación del Cáncer (IBMCC, CSIC-USAL) and IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Michael Lübbert
- Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Center for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Julie Schanz
- Clinic of Hematology and Medical Oncology, Universitymedicine Göttingen, Göttingen, Germany
| | - Marie C Béné
- Laboratoire d'Hématologie CHU de Nantes, Nantes, France
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Reinhard Stauder
- Department of Internal Medicine V (Haematology and Oncology) Innsbruck Medical University, Innsbruck, Austria
| | | | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - John M Bennett
- Department of Pathology, Hematopathology Unit and James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Janusz K, del Rey M, Abáigar M, Collado R, Ivars D, Hernández-Sánchez M, Valiente A, Robledo C, Benito R, Díez-Campelo M, Ramos F, Kohlmann A, Cañizo CD, Hernández-Rivas JM. A two-step approach for sequencing spliceosome-related genes as a complementary diagnostic assay in MDS patients with ringed sideroblasts. Leuk Res 2017; 56:82-87. [DOI: 10.1016/j.leukres.2017.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
|
14
|
Patel SS, Sekeres MA, Nazha A. Prognostic models in predicting outcomes in myelodysplastic syndromes after hypomethylating agent failure. Leuk Lymphoma 2017; 58:2532-2539. [DOI: 10.1080/10428194.2017.1307361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sagar S. Patel
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mikkael A. Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
15
|
Drusbosky L, Medina C, Martuscello R, Hawkins KE, Chang M, Lamba JK, Vali S, Kumar A, Singh NK, Abbasi T, Sekeres MA, Mallo M, Sole F, Bejar R, Cogle CR. Computational drug treatment simulations on projections of dysregulated protein networks derived from the myelodysplastic mutanome match clinical response in patients. Leuk Res 2017; 52:1-7. [DOI: 10.1016/j.leukres.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/19/2023]
|
16
|
Shahrabi S, Khosravi A, Shahjahani M, Rahim F, Saki N. Genetics and Epigenetics of Myelodysplastic Syndromes and Response to Drug Therapy: New Insights. Oncol Rev 2016; 10:311. [PMID: 28058097 PMCID: PMC5178845 DOI: 10.4081/oncol.2016.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms ocurring mostly in the elderly. The clinical outcome of MDS patients is still poor despite progress in treatment approaches. About 90% of patients harbor at least one somatic mutation. This review aimed to assess the potential of molecular abnormalities in understanding pathogenesis, prognosis, diagnosis and in guiding choice of proper therapy in MDS patients. Papers related to this topic from 2000 to 2016 in PubMed and Scopus databases were searched and studied. The most common molecular abnormalities were TET2, ASXL1 as well as molecules involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1). Patients with defects in TET2 molecule show better response to treatment with azacitidine. IDH and DNMT3A mutations are associated with a good response to decitabine therapy. In addition, patients with del5q subtype harboring TP53 mutation do not show a good response to lenalidomide therapy. In general, the results of this study show that molecular abnormalities can be associated with the occurrence of a specific morphological phenotype in patients. Therefore, considering the morphology of patients, different gene profiling methods can be selected to choice the most appropriate therapeutic measure in these patients in addition to faster and more cost-effective diagnosis of molecular abnormalities.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Semnan University of Medical Sciences, Semnan
| | - Abbas Khosravi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Mohammad Shahjahani
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Raza A, Ali AM, Reddy MVR, Hoffman BS, Petrone ME, Maniar M, Pinheiro RF, Coutinho DF, Fruchtman SM. Rigosertib in myelodysplastic syndromes (MDS). Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1213628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- A. Raza
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - A. M. Ali
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - M. V. R. Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - M. Maniar
- Onconova Therapeutics, Inc., Newtown, PA, USA
| | - R. F. Pinheiro
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - D. F. Coutinho
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
18
|
Albitar F, Ma W, Diep K, De Dios I, Agersborg S, Thangavelu M, Brodie S, Albitar M. Deep Sequencing of Cell-Free Peripheral Blood DNA as a Reliable Method for Confirming the Diagnosis of Myelodysplastic Syndrome. Genet Test Mol Biomarkers 2016; 20:341-5. [PMID: 27248906 DOI: 10.1089/gtmb.2015.0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Demonstrating the presence of myelodysplastic syndrome (MDS)-specific molecular abnormalities can aid in diagnosis and patient management. We explored the potential of using peripheral blood (PB) cell-free DNA (cf-DNA) and next-generation sequencing (NGS). MATERIALS AND METHODS We performed NGS on a panel of 14 target genes using total nucleic acid extracted from the plasma of 16 patients, all of whom had confirmed diagnoses for early MDS with blasts <5%. PB cellular DNA from the same patients was sequenced using conventional Sanger sequencing and NGS. RESULTS Deep sequencing of the cf-DNA identified one or more mutated gene(s), confirming the diagnosis of MDS in all cases. Five samples (31%) showed abnormalities in cf-DNA by NGS that were not detected by Sanger sequencing on cellular PB DNA. NGS of PB cell DNA showed the same findings as those of cf-DNA in four of five patients, but failed to show a mutation in the RUNX1 gene that was detected in one patient's cf-DNA. Mutant allele frequency was significantly higher in cf-DNA compared with cellular DNA (p = 0.008). CONCLUSION These data suggest that cf-DNA when analyzed using NGS is a reliable approach for detecting molecular abnormalities in MDS and should be used to determine if bone marrow aspiration and biopsy are necessary.
Collapse
Affiliation(s)
- Ferras Albitar
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Wanlong Ma
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Kevin Diep
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Ivan De Dios
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Sally Agersborg
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Maya Thangavelu
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Steve Brodie
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| | - Maher Albitar
- NeoGenomics Laboratories , Department of Hematology and Cytogenetics, Irvine, California
| |
Collapse
|
19
|
Mastaglio F, Bedair K, Papaemmanuil E, Groves MJ, Hyslop A, Keenan N, Hothersall EJ, Campbell PJ, Bowen DT, Tauro S. Impact of socioeconomic status on disease phenotype, genomic landscape and outcomes in myelodysplastic syndromes. Br J Haematol 2016; 174:227-34. [DOI: 10.1111/bjh.14042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Francesca Mastaglio
- Dundee Cancer Centre; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| | - Khaled Bedair
- Division of Population Health Sciences; University of Dundee; Dundee UK
- Photobiology Unit; Department of Dermatology; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| | | | - Michael J. Groves
- Dundee Cancer Centre; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| | - Ann Hyslop
- Department of Haematology; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| | - Norene Keenan
- Department of Haematology; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| | | | | | | | - Sudhir Tauro
- Dundee Cancer Centre; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
- Department of Haematology; Ninewells Hospital & Medical School; University of Dundee; Dundee UK
| |
Collapse
|
20
|
Zorzan E, Hanssens K, Giantin M, Dacasto M, Dubreuil P. Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors. PLoS One 2015; 10:e0142450. [PMID: 26562302 PMCID: PMC4643045 DOI: 10.1371/journal.pone.0142450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
Introduction Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10–30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs. Methods Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the “human-like” hot spot mutations of listed genes. Results No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples. Conclusion Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM.
Collapse
Affiliation(s)
- Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Katia Hanssens
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hematopoiesis and Mechanisms of Oncogenesis, Centre de référence des mastocytoses, Institut Paoli Calmettes, CNRS, Aix Marseille Université, Marseille, France
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Patrice Dubreuil
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hematopoiesis and Mechanisms of Oncogenesis, Centre de référence des mastocytoses, Institut Paoli Calmettes, CNRS, Aix Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
21
|
Wu L, Song L, Xu L, Chang C, Xu F, Wu D, He Q, Su J, Zhou L, Xiao C, Zhang Z, Zhao Y, Chen S, Li X. Genetic landscape of recurrent ASXL1, U2AF1, SF3B1, SRSF2, and EZH2 mutations in 304 Chinese patients with myelodysplastic syndromes. Tumour Biol 2015; 37:4633-40. [PMID: 26508027 DOI: 10.1007/s13277-015-4305-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
We determined the biological and prognostic significance of five recurrent genetic aberrations in Chinese patients with myelodysplastic syndromes (MDS). A total of 304 Chinese MDS patients were screened for known mutations in five genes (ASXL1, U2AF1, SF3B1, SRSF2, and EZH2) using next-generation sequencing. Of these, 97 patients (31.9 %) harbored at least one mutation in the five genes, and patients harboring these mutations had distinct clinical features. Incidence ratios for mutations in ASXL1, U2AF1, SF3B1, SRSF2, and EZH2 were 11.8, 8.6, 8.2, 4.3, and 3.6 %, respectively. Patients with U2AF1, SRSF2, and EZH2 mutations more commonly had high-risk than low-risk subtypes, while SF3B1 mutations were frequently confirmed in MDS subtypes with increased ring sideroblasts. Cases with ASXL1 mutations had a higher percentage of complex karyotypes, while U2AF1 mutations were more common in patients with trisomy 8 or 20q deletions. Notably, among 124 patients with a normal karyotype, 48 (38.7 %) had at least one mutation. Patients with U2AF1 or SRSF2 mutations had significantly shorter overall survival (OS) times compared with patients without these mutations (U2AF1 mutations: median OS, 18 vs 54 months, p = 0.032; SRSF2 mutations: median OS 11 vs 54 months, p = 0.005, respectively). Multivariate analysis showed that the presence of SRSF2 mutations was an independent unfavorable prognostic factor for OS (hazard ratio 2.039; 95 % confidence interval 1.040-4.000; p = 0.038). These data suggest that mutations in epigenetic modification and splicesome genes are common in Chinese patients with MDS, while mutations in U2AF1 and SRSF2 appear to predict an unfavorable prognosis.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lan Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Liyu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
22
|
Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering. Mol Ther 2015; 23:1832-42. [PMID: 26435409 DOI: 10.1038/mt.2015.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
The combination of epigenetic reprogramming with advanced genome editing technologies opened a new avenue to study disease mechanisms, particularly of disorders with depleted target tissue. Bone marrow failure syndromes (BMFS) typically present with a marked reduction of peripheral blood cells due to a destroyed or dysfunctional bone marrow compartment. Somatic and germline mutations have been etiologically linked to many cases of BMFS. However, without the ability to study primary patient material, the exact pathogenesis for many entities remained fragmentary. Capturing the pathological genotype in induced pluripotent stem cells (iPSCs) allows studying potential developmental defects leading to a particular phenotype. The lack of hematopoietic stem and progenitor cells in these patients can also be overcome by differentiating patient-derived iPSCs into hematopoietic lineages. With fast growing genome editing techniques, such as CRISPR/Cas9, correction of disease-causing mutations in iPSCs or introduction of mutations in cells from healthy individuals enable comparative studies that may identify other genetic or epigenetic events contributing to a specific disease phenotype. In this review, we present recent progresses in disease modeling of inherited and acquired BMFS using reprogramming and genome editing techniques. We also discuss the challenges and potential shortcomings of iPSC-based models for hematological diseases.
Collapse
|
23
|
Gross SA, Fedak KM. Applying a Weight-of-Evidence Approach to Evaluate Relevance of Molecular Landscapes in the Exposure-Disease Paradigm. BIOMED RESEARCH INTERNATIONAL 2015; 2015:515798. [PMID: 26339619 PMCID: PMC4538402 DOI: 10.1155/2015/515798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/16/2015] [Indexed: 12/04/2022]
Abstract
Information on polymorphisms, mutations, and epigenetic events has become increasingly important in our understanding of molecular mechanisms associated with exposures-disease outcomes. Molecular landscapes can be developed to illustrate the molecular characteristics for environmental carcinogens as well as associated disease outcomes, although comparison of these molecular landscapes can often be difficult to navigate. We developed a method to organize these molecular data that uses a weight-of-evidence approach to rank overlapping molecular events by relative importance for susceptibility to an exposure-disease paradigm. To illustrate the usefulness of this approach, we discuss the example of benzene as an environmental carcinogen and myelodysplastic syndrome (MDS) as a causative disease endpoint. Using this weight-of-evidence method, we found overlapping polymorphisms in the genes for the metabolic enzymes GST and NQO1, both of which may infer risk of benzene-induced MDS. Polymorphisms in the tumor suppressor gene, TP53, and the inflammatory cytokine gene, TNF-α, were also noted, albeit inferring opposing outcomes. The alleles identified in the DNA repair gene RAD51 indicated an increased risk for MDS in MDS patients and low blood cell counts in benzene-exposed workers. We propose the weight-of-evidence approach as a tool to assist in organizing the sea of emerging molecular data in exposure-disease paradigms.
Collapse
Affiliation(s)
- Sherilyn A. Gross
- Cardno ChemRisk, 4840 Pearl East Circle 300 W., Boulder, CO 80304, USA
| | - Kristen M. Fedak
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Gondek LP, DeZern AE. I walk the line: how to tell MDS from other bone marrow failure conditions. Curr Hematol Malig Rep 2015; 9:389-99. [PMID: 25079655 DOI: 10.1007/s11899-014-0224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by peripheral cytopenias and ineffective hematopoiesis. MDS is an example of an age-related malignancy and its increasing prevalence and incidence can be attributed to a greater life expectancy in developed countries. Although frequently encountered in hematology/oncology clinics, MDS may constitute a diagnostic challenge especially with equivocal bone marrow morphology. Certain syndromes of bone marrow failure (BMF) may mimic MDS and formulating a correct diagnosis is vital for adequate prognostication as well as therapeutic approaches. Metaphase karyotyping (MK) is a very important diagnostic tool and marker of prognosis and can be an indicator of response to certain therapies. Unfortunately, chromosomal abnormalities may only be found in approximately 50 % of patients with MDS. In this review, we discuss the diagnostic approaches to patients with pancytopenia with a particular focus on the growing number of somatic mutations through new molecular testing.
Collapse
Affiliation(s)
- Lukasz P Gondek
- Department of Oncology, Division of Hematological Malignancies, Johns Hopkins University, 1650 Orleans St, CRB1-290, Baltimore, MD, 21231, USA,
| | | |
Collapse
|
25
|
Outlook and Management of Patients with Myelodysplastic Syndromes Failed by Hypomethylating Agents. Curr Hematol Malig Rep 2015; 10:318-28. [DOI: 10.1007/s11899-015-0273-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Abstract
DNA methylation patterns are disrupted in various malignancies, suggesting a role in the development of cancer, but genetic aberrations directly linking the DNA methylation machinery to malignancies were rarely observed, so this association remained largely correlative. Recently, however, mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) were reported in patients with acute myeloid leukaemia (AML), and subsequently in patients with various other haematological malignancies, pointing to DNMT3A as a critically important new tumour suppressor. Here, we review the clinical findings related to DNMT3A, tie these data to insights from basic science studies conducted over the past 20 years and present a roadmap for future research that should advance the agenda for new therapeutic strategies.
Collapse
Affiliation(s)
- Liubin Yang
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Rachel Rau
- 1] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Margaret A Goodell
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Zoi K, Cross NCP. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 2014; 101:229-42. [PMID: 25212680 DOI: 10.1007/s12185-014-1670-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
According to the 2008 WHO classification, the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) includes atypical chronic myeloid leukaemia (aCML), chronic myelomonocytic leukaemia (CMML), MDS/MPN-unclassifiable (MDS/MPN-U), juvenile myelomonocytic leukaemia (JMML) and a "provisional" entity, refractory anaemia with ring sideroblasts and thrombocytosis (RARS-T). The remarkable progress in our understanding of the somatic pathogenesis of MDS/MPN has made it clear that there is considerable overlap among these diseases at the molecular level, as well as layers of unexpected complexity. Deregulation of signalling plays an important role in many cases, and is clearly linked to more highly proliferative disease. Other mutations affect a range of other essential, interrelated cellular mechanisms, including epigenetic regulation, RNA splicing, transcription, and DNA damage response. The various combinations of mutations indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. The delineation of complex clonal architectures may serve as the cornerstone for the identification of novel therapeutic targets and lead to better patient outcomes. This review summarizes some of the current knowledge of molecular pathogenetic lesions in the MDS/MPN subtypes that are seen in adults: atypical CML, CMML and MDS/MPN-U.
Collapse
Affiliation(s)
- Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | |
Collapse
|
28
|
The hENT1 and DCK genes underlie the decitabine response in patients with myelodysplastic syndrome. Leuk Res 2014; 39:216-20. [PMID: 25533931 DOI: 10.1016/j.leukres.2014.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/31/2014] [Accepted: 08/24/2014] [Indexed: 11/23/2022]
Abstract
Decitabine is approved for the treatment of MDS, but resistance to this agent is common. To determine the mechanisms underlying decitabine resistance, we measured the mRNA expression of metabolism (hENT1, DCK, CDA) and apoptosis (BCL2L10) genes and found that the hENT1 mRNA level was significantly higher in response compared with non-response patients (P=0.004). Furthermore, the DCK level was significantly reduced for relapse (P=0.012) compared with those with continued marrow CR (P=0.222). These findings indicate that the decitabine metabolic pathway affects its therapeutic effects, lower hENT1 expression may induce primary resistance and down-regulated DCK expression may be related to secondary resistance.
Collapse
|
29
|
Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One 2014; 9:e99769. [PMID: 24914952 PMCID: PMC4051762 DOI: 10.1371/journal.pone.0099769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Mutations in the human DNA methyl transferase 3A (DNMT3A) gene are recurrently identified in several hematologic malignancies such as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML). They have been shown to confer worse prognosis in some of these entities. Notably, about 2/3 of these mutations are missense mutations in codon R882 of the gene. We aimed at the development and validation of a novel easily applicable in routine practice method for quantitative detection of the DNMT3A p.R882C/H/R/S mutations bead-based suspension assay. Initial testing on plasmid constructs showed excellent performance of BNA(NC)-modified probes with an optimal hybridization temperature of 66°C. The method appeared to be quantitative and showed sensitivity of 2.5% for different mutant alleles, making it significantly superior to direct sequencing. The assay was further validated on plasmid standards at different ratios between wild type and mutant alleles and on clinical samples from 120 patients with known or suspected myeloid malignancies. This is the first report on the quantitative detection of DNMT3A R882 mutations using bead-based suspension assay with BNA(NC)-modified probes. Our data showed that it could be successfully implemented in the diagnostic work-up for patients with myeloid malignancies, as it is rapid, easy and reliable in terms of specificity and sensitivity.
Collapse
|