1
|
Zhao W, Wu M, Mei L, Li H. Ultra-Sensitive Electrochemical Determination of Carcinoembryonic Antigen by a Sandwich Immunosensor Graphene Oxide (GO)-Gold Substrate and a Silver-Coated Bovine Serum Albumin (BSA)-Platinum Nanocomposite on a Glassy Carbon Electrode (GCE). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1979573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wentang Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Mei Wu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
3
|
Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta 2020; 217:121091. [DOI: 10.1016/j.talanta.2020.121091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
4
|
Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020; 6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a broad-spectrum disease which is spread globally, having high mortality rates. This results from genetic, epigenetic and molecular abnormalities caused by various mutations. The main reason behind this critical problem lies in its diagnostics, the late detection of the disease is the root cause of all this. This can be managed well by the timely diagnosis of cancer by means of the tumor biomarkers present in the body fluids such as serum, blood, and urine. These tumor biomarkers are present in normal conditions as well, but their concentrations are altered in the presence of a malignant tumor. Prolonged studies have reported that immunosensors can be used to detect the minimal amount of biomarkers present in the sample and also provides point-of-care detection. The recent investigations demonstrated the use of polymers along with immunosensors for enhancing their selectivity and sensitivity towards the biomarkers and making them even more efficient. This review focuses on the variety of tumor biomarkers, different types of immunosensors and polymeric immunosensors using different polymers like polypyrrole, polyaniline, PHEMA, etc.
Collapse
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | | | | | | |
Collapse
|
5
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shi YC, Wang AJ, Yuan PX, Zhang L, Luo X, Feng JJ. Highly sensitive label-free amperometric immunoassay of prostate specific antigen using hollow dendritic AuPtAg alloyed nanocrystals. Biosens Bioelectron 2018; 111:47-51. [DOI: 10.1016/j.bios.2018.03.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
|
7
|
|
8
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
9
|
Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for Electrochemical Immunosensing. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1041. [PMID: 28475158 PMCID: PMC5469646 DOI: 10.3390/s17051041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Ying Gu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Min Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Xincui Jin
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| |
Collapse
|
10
|
Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly(indole-6-carboxylic acid). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1940-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 2016; 88:217-231. [PMID: 27567264 DOI: 10.1016/j.bios.2016.08.028] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022]
Abstract
Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling.
Collapse
Affiliation(s)
- Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Nandini Gautam
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, 151001 India.
| | - Anil K Mantha
- Centre for Animal Sciences, Central University of Punjab, Bathinda, 151001 India.
| |
Collapse
|
12
|
Wu D, Ma H, Zhang Y, Jia H, Yan T, Wei Q. Corallite-like Magnetic Fe3O4@MnO2@Pt Nanocomposites as Multiple Signal Amplifiers for the Detection of Carcinoembryonic Antigen. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18786-18793. [PMID: 26244448 DOI: 10.1021/acsami.5b05443] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A nonenzymatic sandwich-type electrochemical immunosensor using corallite-like magnetic Fe3O4@MnO2@Pt nanocomposites was developed for the sensitive detection of carcinoembryonic antigen (CEA). First, aminated graphene (GS-NH2) sheets were synthesized from graphite oxide using the Hummers' method, which was used to immobilize the primary antibody via the active amino groups on the GS-NH2. Second, corallite-like Fe3O4@MnO2@Pt nanoparticles (NPs) were synthesized and characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). They were used as labels to conjugate with a secondary antibody. The multiple amplification of Fe3O4@MnO2@Pt NPs and the promoted electron transfer of GS-NH2 lead to a broad linear range from 0.5 pg/mL to 20 ng/mL and a low detection limit with 0.16 pg/mL. In addition, the immunosensor performed with good selectivity and acceptable stability and reproducibility as well. The results are satisfactory when the proposed method has been applied to analyze human serum samples. Thus, there would be a promising future in the early diagnosis of cancer to detect CEA and other tumor markers.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Hongying Jia
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| |
Collapse
|
13
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
14
|
Yang P, Li X, Wang L, Wu Q, Chen Z, Lin X. Sandwich-type amperometric immunosensor for cancer biomarker based on signal amplification strategy of multiple enzyme-linked antibodies as probes modified with carbon nanotubes and concanavalin A. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ronkainen NJ, Okon SL. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4669-4709. [PMID: 28788700 PMCID: PMC5455914 DOI: 10.3390/ma7064669] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022]
Abstract
Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.
Collapse
Affiliation(s)
- Niina J Ronkainen
- Department of Chemistry and Biochemistry, Benedictine University, 5700 College Road, Lisle, IL 60532, USA.
| | - Stanley L Okon
- Department of Psychiatry, Advocate Lutheran General Hospital, 8South, 1775 West Dempster Street, Park Ridge, IL 60068, USA.
- Formerly of the Department of Pathology, University of Illinois at Chicago, MC 847, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Lu W, Ge J, Tao L, Cao X, Dong J, Qian W. Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Li Y, Xu C, Li H, Wang H, Wu D, Ma H, Cai Y, Du B, Wei Q. Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosens Bioelectron 2014; 56:295-9. [DOI: 10.1016/j.bios.2014.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
|
18
|
Jin B, Wang P, Mao H, Hu B, Zhang H, Cheng Z, Wu Z, Bian X, Jia C, Jing F, Jin Q, Zhao J. Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosens Bioelectron 2014; 55:464-9. [DOI: 10.1016/j.bios.2013.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 10/01/2022]
|
19
|
Aslan S, Anik Ü. Development of TiO2and Au Nanocomposite Electrode as CEA Immunosensor Transducer. ELECTROANAL 2014. [DOI: 10.1002/elan.201400086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Jia X, Chen X, Han J, Ma J, Ma Z. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron 2014; 53:65-70. [DOI: 10.1016/j.bios.2013.09.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023]
|
21
|
Nie G, Li C, Zhang L, Wang L. Fabrication of a simple and sensitive QDs-based electrochemiluminescence immunosensor using a nanostructured composite material for the detection of tumor markers alpha-fetoprotein. J Mater Chem B 2014; 2:8321-8328. [DOI: 10.1039/c4tb01308e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A simple label-free electrochemiluminescence immunosensor was fabricated for detection of alpha-fetoprotein (AFP) based on a nanostructured composite material (PICA–MWNT) with 2-aminoethanethiol modified CdSe nanoclusters as luminescent particles.
Collapse
Affiliation(s)
- Guangming Nie
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, People's Republic of China
| | - Chenxi Li
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, People's Republic of China
| | - Lin Zhang
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, People's Republic of China
| | - Ling Wang
- State Key Laboratory Base of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, People's Republic of China
| |
Collapse
|
22
|
Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R. Electrochemical immunosensors in breast and ovarian cancer. Clin Chim Acta 2013; 425:128-38. [DOI: 10.1016/j.cca.2013.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 12/20/2022]
|
23
|
Mattos AB, Freitas TA, Kubota LT, Dutra RF. An o-aminobenzoic acid film-based immunoelectrode for detection of the cardiac troponin T in human serum. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wang X, Zhou M, Zhu Y, Miao J, Mao C, Shen J. Preparation of a novel immunosensor for tumor biomarker detection based on ATRP technique. J Mater Chem B 2013; 1:2132-2138. [DOI: 10.1039/c3tb00003f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta 2012; 758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/17/2022]
Abstract
Methods based on sandwich-type immunosensors and immunoassays have been developed for detection of multivalent antigens/analytes with more than one eptiope due to the use of two matched antibodies. High-affinity antibodies and appropriate labels are usually employed for the amplification of detectable signal. Recent research has looked to develop innovative and powerful novel nanoparticle labels, controlling and tailoring their properties in a very predictable manner to meet the requirements of specific applications. This articles reviews recent advances, exploiting nanoparticle labels, in the sandwich-type immunosensors and immunoassays. Routine approaches involve noble metal nanoparticles, carbon nanomaterials, semiconductor nanoparticles, metal oxide nanostructures, and hybrid nanostructures. The enormous signal enhancement associated with the use of nanoparticle labels and with the formation of nanoparticle-antibody-antigen assemblies provides the basis for sensitive detection of disease-related proteins or biomolecules. Techniques commonly rely on the use of biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tag-doped nanoparticles. Rather than being exhaustive, this review focuses on selected examples to illustrate novel concepts and promising applications. Approaches described include the biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tage-doped nanoparticles. Further, promising application in electrochemical, mass-sensitive, optical and multianalyte detection are discussed in detail.
Collapse
Affiliation(s)
- Xiaomei Pei
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Zhou J, Zhuang J, Miró M, Gao Z, Chen G, Tang D. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement. Biosens Bioelectron 2012; 35:394-400. [DOI: 10.1016/j.bios.2012.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
|