1
|
Abouelkheir SS, Ibrahim HAH, Beltagy EA. Functionalized maghemite superparamagnetic iron oxide nanoparticles (γ-Fe 2O 3-SPIONs)-amylase enzyme hybrid in biofuel production. Sci Rep 2023; 13:11117. [PMID: 37429869 DOI: 10.1038/s41598-023-37826-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The current study describes a straightforward, biologically and environmentally friendly method for creating magnetic iron oxide (γ-Fe2O3) nanoparticles. We report here that the Bacillus subtilis SE05 strain, isolated from offshore formation water near Zaafarana, the Red Sea, Hurghada, Egypt, can produce highly magnetic iron oxide nanoparticles of the maghemite type (γ-Fe2O3). To the best of our knowledge, the ability of this bacterium to reduce Fe2O3 has yet to be demonstrated. As a result, this study reports on the fabrication of enzyme-NPs and the biological immobilization of α-amylase on a solid support. The identified strain was deposited in GenBank with accession number MT422787. The bacterial cells used for the synthesis of magnetic nanoparticles produced about 15.2 g of dry weight, which is considered a high quantity compared to the previous studies. The XRD pattern revealed the crystalline cubic spinel structure of γ-Fe2O3. TEM micrographs showed the spherically shaped IONPs had an average size of 7.68 nm. Further, the importance of protein-SPION interaction and the successful synthesis of stabilized SPIONs in the amylase enzyme hybrid system are also mentioned. The system showed the applicability of these nanomaterials in biofuel production, which demonstrated significant production (54%) compared to the free amylase enzyme (22%). Thus, it is predicted that these nanoparticles can be used in energy fields.
Collapse
Affiliation(s)
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Ehab A Beltagy
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
2
|
Salehi ME, Asoodeh A. Immobilization of endoglucanase isolated from symbiotic bacterium Bacillus safensis CF99 on magnetic nanoparticles. CHEMICAL PAPERS 2022; 76:6523-6536. [DOI: 10.1007/s11696-022-02342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
3
|
Gupta N, Beliya E, Paul JS, Jadhav S. Nanoarmoured α-amylase: A route leading to exceptional stability, catalysis and reusability for industrial applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 2022; 63:11351-11369. [PMID: 35758266 DOI: 10.1080/10408398.2022.2092719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid progress in modern technologies and paying more attention to food safety has prompted new green technologies superior than chemical methods in the food industry. In this regard, enzymes can decrease the usage of chemical reactions but they are sensitive to environmental effects (pH and temperature). In addition, enzymes are scarcely possible to be reused. Consequently, their application as natural catalysts is restricted. Using nanotechnology and the possibility of enzyme immobilization on nanomaterials has led to nanobiocatalysts, resulting from the integration of nanotechnology and biotechnology. Nanocarriers have individual features like nanoscale size, excellent surface/volume ratio, and diversity in construction to improve the activity, efficiency, stability, and storage stability of enzymes. Nanobiocatolysts have a wide range of applications in purification, extraction, clarification, production, and packaging of various products in the food industry. Furthermore, the application of nanobiocatalysts to identify specific components of food contaminants such as microorganisms or their metabolites, heavy metals, antibiotics, and residual pesticides has been successful due to the high accuracy of detection. This review investigates the integration of nanotechnology and food enzymes, the nanomaterials used to create nanobiocatalysts and their application, along with the possible risks and legal aspects of nanomaterials in food bioprocesses.
Collapse
Affiliation(s)
- Zahra Beig Mohammadi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
5
|
Optimization of Alpha-Amylase Production by a Local Bacillus paramycoides Isolate and Immobilization on Chitosan-Loaded Barium Ferrite Nanoparticles. FERMENTATION 2022. [DOI: 10.3390/fermentation8050241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We set out to isolate alpha-amylase producers from soil samples, optimize the production, and immobilize the enzyme on chitosan-loaded barium ferrite nanoparticles (CLBFNPs). Alpha-amylase producers were isolated on starch agar plates and confirmed by dinitrosalicylic acid assay. The potent isolate was identified by phenotypic methods, 16S-rRNA sequencing, and phylogenetic mapping. Sequential optimization of α-amylase production involved the use of Plackett–Burman (P–BD) and central composite designs (CCD), in addition to exposing the culture to different doses of gamma irradiation. Alpha-amylase was immobilized on CLBFNPs, and the nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy, with energy-dispersive analysis of X-ray analysis. Forty-five α-amylase producers were isolated from 100 soil samples. The highest activity (177.12 ± 6.12 U/mg) was detected in the MS009 isolate, which was identified as Bacillus paramycoides. The activity increased to 222.3 ± 5.07 U/mg when using the optimal culture conditions identified by P–BD and CCD, and to 319.45 ± 4.91 U/mg after exposing the culture to 6 kGy. Immobilization of α-amylase on CLBFNPs resulted in higher activity (246.85 ± 6.76 U/mg) compared to free α-amylase (222.254 ± 4.89 U/mg), in addition to retaining activity for up to five cycles of usage. Gamma irradiation improved α-amylase production, while immobilization on CLBFNPs enhanced activity, facilitated enzyme recovery, and enabled its repetitive use.
Collapse
|
6
|
Salem K, Jabalera Y, Puentes-Pardo JD, Vilchez-Garcia J, Sayari A, Hmida-Sayari A, Jimenez-Lopez C, Perduca M. Enzyme Storage and Recycling: Nanoassemblies of α-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:4054-4063. [PMID: 35070520 PMCID: PMC8765010 DOI: 10.1021/acssuschemeng.0c08300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Indexed: 05/03/2023]
Abstract
Immobilization of enzymes has been extensively required in a wide variety of industrial applications as a way to ensure functionality and the potential of enzyme recycling after use. In particular, enzyme immobilization on magnetic nanoparticles (MNPs) could offer reusability by means of magnetic recovery and concentration, along with increased stability and robust activity of the enzyme under different physicochemical conditions. In the present work, microbial α-amylase (AmyKS) and xylanase (XAn11) were both immobilized on different types of MNPs [MamC-mediated biomimetic MNPs (BMNPs) and inorganic MNPs] by using two different strategies (electrostatic interaction and covalent bond). AmyKS immobilization was successful using electrostatic interaction with BMNPs. Instead, the best strategy to immobilize XAn11 was using MNPs through the hetero-crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The immobilization protocols were optimized by varying glutaraldehyde (GA) concentration, enzyme quantity, and reaction time. Under optimal conditions, 92% of AmyKS and 87% of XAn11 were immobilized on BMNPs and MNPs-E/N, respectively (here referred as AmyKS-BMNPs and XAn11-MNPs nanoassemblies). The results show that the immobilization of the enzymes did not extensively alter their functionality and increased enzyme stability compared to that of the free enzyme upon storage at 4 and 20 °C. Interestingly, the immobilized amylase and xylanase were reused for 15 and 8 cycles, respectively, without significant loss of activity upon magnetic recovery of the nanoassemblies. The results suggest the great potential of these nanoassemblies in bioindustry applications.
Collapse
Affiliation(s)
- Karima Salem
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Ylenia Jabalera
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jose David Puentes-Pardo
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jesus Vilchez-Garcia
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Adel Sayari
- ENIS,
Université de Sfax, BP “1173”, 3038 Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- . Phone: +34
958249833
| | - Massimiliano Perduca
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- . Phone: +39 0458027984
| |
Collapse
|
7
|
Doraiswamy N, Sarathi M, Pennathur G. Improvement in biochemical characteristics of cross-linked enzyme aggregates (CLEAs) with magnetic nanoparticles as support matrix. Methods Enzymol 2020; 630:133-158. [PMID: 31931983 DOI: 10.1016/bs.mie.2019.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Recent developments in novel carriers for enzyme immobilization have led to improvement in the stability and cost-effectiveness of the biocatalysts for their enhanced suitability in the industrial applications. Cross-linked enzyme aggregates (CLEAs), a recent technique developed in the carrier-free type of enzyme immobilization is a simple and straightforward method. Moreover, the magnetic property and the higher surface-to-volume ratio of the maghemite nanoparticles have also been utilized in the present immobilization technique as magnetic nanoparticle-supported CLEAs (Mgnp-CLEAs). The stability studies of the free and immobilized enzyme revealed the Mgnp-CLEAs to have enhanced enzyme stability with an increase in the reusability cycle. The physical characterization of the nanoparticles and immobilized enzymes by the Scanning Electron Microscopy (SEM), Fourier-Transform Infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD) showed the successful immobilization of the enzyme for its improved stability.
Collapse
Affiliation(s)
| | | | - Gautam Pennathur
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India; AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Oktay B, Demir S, Kayaman‐Apohan N. Preparation of a Poly(ethylene glycol)‐Based Cross‐Linked Network from a Click Reaction for Enzyme Immobilization. ChemistrySelect 2019. [DOI: 10.1002/slct.201900296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Burcu Oktay
- Marmara UniversityDepartment of Chemistry, 34722 Göztepe-Istanbul Turkey
| | - Serap Demir
- Marmara UniversityDepartment of Chemistry, 34722 Göztepe-Istanbul Turkey
| | | |
Collapse
|
9
|
Doraiswamy N, Sarathi M, Pennathur G. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix. Prep Biochem Biotechnol 2019; 49:270-278. [DOI: 10.1080/10826068.2018.1536993] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Wang Y, Wang Q, Song X, Cai J. Hydrophilic polyethylenimine modified magnetic graphene oxide composite as an efficient support for dextranase immobilization with improved stability and recyclable performance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Gao B, He L, Wei D, Zhang L. Identification and magnetic immobilization of a pyrophilous aspartic protease from Antarctic psychrophilic fungus. J Food Biochem 2018. [DOI: 10.1111/jfbc.12691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology Shanghai China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Molecular Engineering East China Normal University Shanghai China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai China
| |
Collapse
|
12
|
Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 2017; 102:694-703. [DOI: 10.1016/j.ijbiomac.2017.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022]
|
13
|
He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, Wei D. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 2017; 17:22. [PMID: 28245836 PMCID: PMC5331696 DOI: 10.1186/s12896-017-0343-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/23/2017] [Indexed: 12/05/2022] Open
Abstract
Background α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed. Results A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0–20 °C. The Km and Vmax values toward soluble starch were 2.51 mg/mL and 8.24 × 10−2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization. Conclusions A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0343-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Youzhi Mao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Lujia Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Hualei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: A review. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/boca-2017-0004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractNumerous types of nanoparticles and nanocomposites have successfully been employed for the immobilization and stabilization of amylolytic enzymes; α-amylases, β-amylases, glucoamylases and pullulanases. Nano-support immobilized amylolytic enzymes retained very high activity and yield of immobilization. The immobilization of these enzymes, particularly α-amylases and pullulanases, to the nanosupports is helpful in minimizing the problem of steric hindrances during binding of substrate to the active site of the enzyme. The majority of nano-support immobilized amylolytic enzymes exhibited very high resistance to inactivation induced by different kinds of physical and chemical denaturants and these immobilized enzyme preparations maintained very high activity on their repeated and continuous uses. Amylolytic enzymes immobilized on nano-supports have successfully been applied in food, fuel, textile, paper and pulp, detergent, environmental, medical, and analytical fields.
Collapse
|
15
|
Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules 2016; 21:molecules21081074. [PMID: 27548117 PMCID: PMC6274110 DOI: 10.3390/molecules21081074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.
Collapse
|
16
|
Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Radovanović M, Jugović B, Gvozdenović M, Jokić B, Grgur B, Bugarski B, Knežević-Jugović Z. Immobilization of α-amylase via adsorption on magnetic particles coated with polyaniline. STARCH-STARKE 2015. [DOI: 10.1002/star.201500161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Branimir Jugović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts; Belgrade Serbia
| | - Milica Gvozdenović
- University of Belgrade; Faculty of Technology and Metallurgy; Belgrade Serbia
| | - Bojan Jokić
- University of Belgrade; Faculty of Technology and Metallurgy; Belgrade Serbia
| | - Branimir Grgur
- University of Belgrade; Faculty of Technology and Metallurgy; Belgrade Serbia
| | - Branko Bugarski
- University of Belgrade; Faculty of Technology and Metallurgy; Belgrade Serbia
| | | |
Collapse
|