1
|
Antonicelli G, Vasile N, Piro E, Fraterrigo Garofalo S, Menin B, Verga F, Pirri F, Agostino V. Harnessing an adapted strain of Clostridium carboxidivorans to unlock hexanol production from carbon dioxide and hydrogen in elevated-pressure stirred tank reactors. BIORESOURCE TECHNOLOGY 2025; 418:131966. [PMID: 39662847 DOI: 10.1016/j.biortech.2024.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
To successfully scale-up the production of bio-based building blocks through CO2 and H2-based gas fermentation, it is crucial to deeply understand and control the microbial catalyst response to the bioreactor environment. This study investigates the effects of key process parameters, such as CO2 and H2 partial pressures, gas feeding strategies, and mixture composition, on the production pathways of an evolved Clostridium carboxidivorans strain. The ultimate goal is to optimize 1-hexanol production in elevated-pressure stirred-tank reactors. Continuous gas feeding enhanced acetogenic and solventogenic metabolisms, while gas-limited conditions promoted chain elongation to caproic acid. An optimized process, combining an initial gas-limited step followed by a continuous gas phase, increased 1-hexanol production, achieving a maximum biomass-specific productivity of 0.9 g gCDW-1 day-1. In-situ product extraction improved 1-hexanol carbon selectivity to an unprecedented 60 %. These findings demonstrate the potential of CO2 and H2-fed fermentation to produce high-value chemicals other than ethanol and acetate.
Collapse
Affiliation(s)
- G Antonicelli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - N Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - E Piro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Life Sciences and Systems Biology, University of Turin, Via Verdi 8, Turin 10124, Italy.
| | - S Fraterrigo Garofalo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - B Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Institute of Agricultural Biology and Biotechnology, National Research Council, CNR-IBBA, Via Alfonso Corti 12, Milano 20133, Italy.
| | - F Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - F Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - V Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy.
| |
Collapse
|
2
|
Devi NB, Pugazhenthi G, Pakshirajan K. Synthetic biology approaches and bioseparations in syngas fermentation. Trends Biotechnol 2025; 43:111-130. [PMID: 39168757 DOI: 10.1016/j.tibtech.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fossil fuel use drives greenhouse gas emissions and climate change, highlighting the need for alternatives like biomass-derived syngas. Syngas, mainly H2 and CO, is produced via biomass gasification and offers a solution to environmental challenges. Syngas fermentation through the Wood-Ljungdahl pathway yields valuable chemicals under mild conditions. However, challenges in scaling up persist due to issues like unpredictable syngas composition and microbial fermentation contamination. This review covers advancements in genetic tools and metabolic engineering to expand product range, highlighting crucial enabling technologies that expedite strain development for acetogens and other non-model organisms. This review paper provides an in-depth exploration of syngas fermentation, covering microorganisms, gas composition effects, separation techniques, techno economic analysis, and commercialization efforts.
Collapse
Affiliation(s)
- Naorem Bela Devi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Niu C, Zhao X, Shi D, Ying Y, Wu M, Lai CY, Guo J, Hu S, Liu T. Bioreduction of chromate in a syngas-based membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134195. [PMID: 38581872 DOI: 10.1016/j.jhazmat.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.
Collapse
Affiliation(s)
- Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Danting Shi
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
| | - Yifeng Ying
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Costa P, Basaglia M, Casella S, Kennes C, Favaro L, Carmen Veiga M. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H 2 and CO 2 from fruit waste. BIORESOURCE TECHNOLOGY 2023; 390:129880. [PMID: 37852509 DOI: 10.1016/j.biortech.2023.129880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The environmental concerns regarding fossil plastics call for alternative biopolymers such as polyhydroxyalkanoates (PHAs) whose manufacturing costs are however still too elevated. Autotrophic microbes like Cupriavidus necator, able to convert CO2 and H2 into PHAs, offer an additional strategy. Typically, the preferred source for CO2 and H2 are expensive pure gases or syngas, which has toxic compounds for most PHAs-accumulating strains. In this work, for the first time, H2 and CO2 originating from an acidogenic reactor were converted autotrophically into poly(3-hydroxybutyrate) P(3HB). During the first stage, a mixed microbial community continuously catabolized melon waste into H2 (26.7 %) and CO2 (49.2 %) that were then used in a second bioreactor by C. necator DSM 545 to accumulate 1.7 g/L P(3HB). Additionally, the VFAs (13 gCOD/L) produced during acidogenesis were processed into 2.7 g/L of P(3HB-co-3HV). This is the first proof-of-concept of using acidogenic-derived H2 and CO2 from fruit waste to produce PHAs.
Collapse
Affiliation(s)
- Paolo Costa
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy; Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy.
| | - Maria Carmen Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| |
Collapse
|
5
|
Conversion of Syngas from Entrained Flow Gasification of Biogenic Residues with Clostridium carboxidivorans and Clostridium autoethanogenum. FERMENTATION 2022. [DOI: 10.3390/fermentation8090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthesis gas fermentation is a microbial process, which uses anaerobic bacteria to convert CO-rich gases to organic acids and alcohols and thus presents a promising technology for the sustainable production of fuels and platform chemicals from renewable sources. Clostridium carboxidivorans and Clostridium autoethanogenum are two acetogenic bacteria, which have shown their high potential for these processes by their high tolerance toward CO and in the production of industrially relevant products such as ethanol, 1-butanol, 1-hexanol, and 2,3-butanediol. A promising approach is the coupling of gasification of biogenic residues with a syngas fermentation process. This study investigated batch processes with C. carboxidivorans and C. autoethanogenum in fully controlled stirred-tank bioreactors and continuous gassing with biogenic syngas produced by an autothermal entrained flow gasifier on a pilot scale >1200 °C. They were then compared to the results of artificial gas mixtures of pure gases. Because the biogenic syngas contained 2459 ppm O2 from the bottling process after gasification of torrefied wood and subsequent syngas cleaning for reducing CH4, NH3, H2S, NOX, and HCN concentrations, the oxygen in the syngas was reduced to 259 ppm O2 with a Pd catalyst before entering the bioreactor. The batch process performance of C. carboxidivorans in a stirred-tank bioreactor with continuous gassing of purified biogenic syngas was identical to an artificial syngas mixture of the pure gases CO, CO2, H2, and N2 within the estimation error. The alcohol production by C. autoethanogenum was even improved with the purified biogenic syngas compared to reference batch processes with the corresponding artificial syngas mixture. Both acetogens have proven their potential for successful fermentation processes with biogenic syngas, but full carbon conversion to ethanol is challenging with the investigated biogenic syngas.
Collapse
|
6
|
Vees CA, Herwig C, Pflügl S. Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. BIORESOURCE TECHNOLOGY 2022; 353:127138. [PMID: 35405210 DOI: 10.1016/j.biortech.2022.127138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, continuous cultivations of C.carboxidivorans to study heterotrophic and mixotrophic conversion of glucose and H2, CO2, and CO were established. Glucose fermentations at pH 6 showed a high ratio of alcohol-to-acid production of 2.79 mol mol-1. While H2 or CO2 were not utilized together with glucose, CO feeding drastically increased the combined alcohol titer to 9.1 g l-1. Specifically, CO enhanced acetate (1.9-fold) and ethanol (1.7-fold) production and triggered chain elongation to butanol (1.5-fold) production but did not change the alcohol:acid ratio. Flux balance analysis showed that CO served both as a carbon and energy source, and CO mixotrophy displayed a carbon and energy efficiency of 45 and 77%, respectively. This study expands the knowledge on physiology and metabolism of C.carboxidivorans and can serve as the starting point for rational engineering and process intensification to establish efficient production of alcohols and acids from carbon waste.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Christoph Herwig
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
7
|
Abstract
Energy consumption places growing demands on modern lifestyles, which have direct impacts on the world’s natural environment. To attain the levels of sustainability required to avoid further consequences of changes in the climate, alternatives for sustainable production not only of energy but also materials and chemicals must be pursued. In this respect, syngas fermentation has recently attracted much attention, particularly from industries responsible for high levels of greenhouse gas emissions. Syngas can be obtained by thermochemical conversion of biomass, animal waste, coal, municipal solid wastes and other carbonaceous materials, and its composition depends on biomass properties and gasification conditions. It is defined as a gaseous mixture of CO and H2 but, depending on those parameters, it can also contain CO2, CH4 and secondary components, such as tar, oxygen and nitrogenous compounds. Even so, raw syngas can be used by anaerobic bacteria to produce biofuels (ethanol, butanol, etc.) and biochemicals (acetic acid, butyric acid, etc.). This review updates recent work on the influence of biomass properties and gasification parameters on syngas composition and details the influence of these secondary components and CO/H2 molar ratio on microbial metabolism and product formation. Moreover, the main challenges, opportunities and current developments in syngas fermentation are highlighted in this review.
Collapse
|
8
|
Process Engineering Aspects for the Microbial Conversion of C1 Gases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:33-56. [PMID: 34291298 DOI: 10.1007/10_2021_172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Industrially applied bioprocesses for the reduction of C1 gases (CO2 and/or CO) are based in particular on (syn)gas fermentation with acetogenic bacteria and on photobioprocesses with microalgae. In each case, process engineering characteristics of the autotrophic microorganisms are specified and process engineering aspects for improving gas and electron supply are summarized before suitable bioreactor configurations are discussed for the production of organic products under given economic constraints. Additionally, requirements for the purity of C1 gases are summarized briefly. Finally, similarities and differences in microbial CO2 valorization are depicted comparing gas fermentations with acetogenic bacteria and photobioprocesses with microalgae.
Collapse
|
9
|
Shen B, Zhan X, He Y, Sun Z, Long J, Yang Y, Li X. Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0817-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Rückel A, Hannemann J, Maierhofer C, Fuchs A, Weuster-Botz D. Studies on Syngas Fermentation With Clostridium carboxidivorans in Stirred-Tank Reactors With Defined Gas Impurities. Front Microbiol 2021; 12:655390. [PMID: 33936011 PMCID: PMC8081853 DOI: 10.3389/fmicb.2021.655390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Syngas fermentation processes with acetogenic bacteria like Clostridium carboxidivorans have been proven to be a promising approach for the conversion of CO-rich waste gases into short- and medium-chain alcohols. The challenge of synthesis gas impurities, on the other hand, has always been a major concern for establishing an industrial-scale process, since some of the trace components in waste gases, such as NH3, H2S, and NOx, can have inhibiting or even toxic effects on microbial growth and product formation. Thus, this study aims to identify the effects of the main trace impurities in syngas from gasification of biogenic residues by the supply of defined concentrations of trace impurities to the cultivation medium. Autotrophic gas fermentation studies were performed with C. carboxidivorans in batch-operated fully-controlled stirred-tank bioreactors with continuous gas supply (80% CO and 20% CO2). The syngas components NH3 and H2S had a positive effect on both growth and alcohol formation (ethanol, 1-butanol, and 1-hexanol). The maximum biomass concentration was increased by more than 50%, and the maximum ethanol concentration was more than doubled with 5.0 g L−1 NH4Cl or 1.0 g L−1 H2S provided by the addition of 2.2 g L−1 thioacetamide. The addition of the nitrogen oxide species nitrate and nitrite, on the other hand, reduced biomass growth as well as alcohol concentrations. Already, the supply of 0.1 g L−1 NaNO3 resulted in reduced growth and 25% reduction of the maximum ethanol concentration. The production of the longer chain alcohols 1-butanol and 1-hexanol was reduced as well. All NaNO2 concentrations tested showed a strong toxic effect on the metabolism of C. carboxidivorans, and neither CO consumption nor product formation was observed after addition. As a consequence, NOx components in syngas from the gasification of biogenic residues should be reduced by the gasification process and/or selectively removed from the syngas after gasification.
Collapse
Affiliation(s)
- Anton Rückel
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Jens Hannemann
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Carolin Maierhofer
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Alexander Fuchs
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
11
|
Xu H, Liang C, Chen X, Xu J, Yu Q, Zhang Y, Yuan Z. Impact of exogenous acetate on ethanol formation and gene transcription for key enzymes in Clostridium autoethanogenum grown on CO. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Paladino O, Neviani M. Scale-up of photo-bioreactors for microalgae cultivation by π-theorem. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107398] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Stoll IK, Boukis N, Sauer J. Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- I. Katharina Stoll
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nikolaos Boukis
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
14
|
Arslan K, Bayar B, Nalakath Abubackar H, Veiga MC, Kennes C. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. BIORESOURCE TECHNOLOGY 2019; 292:121941. [PMID: 31401358 DOI: 10.1016/j.biortech.2019.121941] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The ethanol production capability of Clostridium aceticum was investigated and optimized, in order to evaluate the ability of that organism to produce high concentrations of fuel-ethanol. The results showed that C. aceticum can produce significant amounts of ethanol when a natural pH drop occurs in the fermentation broth as a consequence of acetic acid production in a first stage. Applying different pH-regulating strategies allowed to optimize ethanol production, which proved to be more efficient in case of natural acidification due to acetic acid, reaching up to 5.6 g/L ethanol, compared to artificial pH adjustment through the addition of hydrogen chloride. Playing with the pH value and the bioreactor operating conditions showed that, under specific conditions, C. aceticum is able to perform the reverse reaction as well and convert ethanol, produced at low pH, back to acetic acid, impeding, under those specific conditions, further accumulation of ethanol in the fermentation broth.
Collapse
Affiliation(s)
- Kübra Arslan
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Büşra Bayar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain.
| |
Collapse
|
15
|
Riegler P, Bieringer E, Chrusciel T, Stärz M, Löwe H, Weuster-Botz D. Continuous conversion of CO 2/H 2 with Clostridium aceticum in biofilm reactors. BIORESOURCE TECHNOLOGY 2019; 291:121760. [PMID: 31352165 DOI: 10.1016/j.biortech.2019.121760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
A lab-scale stirred-tank bioreactor was reversibly retrofitted to a packed-bed and a trickle-bed biofilm reactor to study and compare the conversion of CO2/H2 with immobilised Clostridiumaceticum. The biofilm reactors were characterised and their functionality confirmed. Up to 8.6 g of C. aceticum were immobilised onto 300 g sintered ceramic carrier material, proving biofilm formation to be a robust means for cell retention of C. aceticum. Continuous CO2/H2-fermentation studies were performed with both biofilm reactor configurations as function of dilution rates, partial gas pressures and gas flow rates. The experiments showed that in the packed-bed biofilm reactor, the acetate space-time yield was independent of the dilution rate, because of low H2 gas-liquid mass transfer rates (≤17 mmol H2 L-1 h-1). The continuous operation of the trickle-bed biofilm reactor increased the gas-liquid mass transfer rates to up to 56 mmol H2 L-1 h-1. Consequently, the acetate space-time yield of up to 14 mmol acetate L-1 h-1 was improved 3-fold at hydrogen conversions of up to 96%.
Collapse
Affiliation(s)
- Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Emmeran Bieringer
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Thomas Chrusciel
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Moritz Stärz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Hannes Löwe
- Technical University of Munich, Associate Professorship of Systems Biotechnology, Garching, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany.
| |
Collapse
|
16
|
Sun X, Atiyeh HK, Huhnke RL, Tanner RS. Syngas fermentation process development for production of biofuels and chemicals: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100279] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|