1
|
Engelbart L, Bieger S, Thompson K, Fischer L, Bader T, Kramer M, Haderlein SB, Röhnelt AM, Martin PR, Buchner D, Bloch R, Rügner H, Huhn C. In-situ formation of glyphosate and AMPA in activated sludge from phosphonates used as antiscalants and bleach stabilizers in households and industry. WATER RESEARCH 2025; 280:123464. [PMID: 40112459 DOI: 10.1016/j.watres.2025.123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
The herbicide glyphosate and aminomethyl phosphonic acid (AMPA), a transformation product of glyphosate and other aminopolyphosphonates are widespread pollutants in European rivers. We recently showed that besides rain-driven input after agricultural or urban herbicide application, municipal wastewater significantly contributes to glyphosate contamination in European rivers. The rather constant mass fluxes over the year, made an explanation by herbicide applications difficult. In our search for a new source of glyphosate and AMPA, we here provide experimental evidence that a certain aminopolyphosphonate, used as antiscalant and bleach stabilizer in household detergents and numerous industrial processes, is a precursor of both glyphosate and AMPA. During incubation experiments with diethylenetriamine penta(methylene phosphonic acid) (DTPMP) in fresh activated sludge, we observed the formation of glyphosate with yields ranging from 0.017 to 0.040 mol% and formation of AMPA in the range of 0.402 to 1.72 mol% after 72 h. Both compounds are formed from DTPMP and possible intermediates, but they are also further transformed themselves in consecutive reactions. Glyphosate formation from DTPMP was further proven by incubating 13C-labeled DTPMP, which transformed into 13C-glyphosate and 13C-AMPA. The addition of DTPMP to azide-treated activated sludge yielded similar or even higher glyphosate and AMPA concentrations indicating that abiotic processes dominate the transformation process. In order to judge the relevance of this in-situ formation of glyphosate and AMPA from the laundry additive DTPMP, we estimated the average concentrations in wastewater.
Collapse
Affiliation(s)
- L Engelbart
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - S Bieger
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - K Thompson
- Universität Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Germany
| | - L Fischer
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - T Bader
- Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Germany
| | - M Kramer
- Eberhard Karls Universität Tübingen, Institute of Organic Chemistry, Department of Chemistry, Germany
| | - S B Haderlein
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - A M Röhnelt
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - P R Martin
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - D Buchner
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - R Bloch
- Berliner Wasserbetriebe, Germany
| | - H Rügner
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - C Huhn
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany.
| |
Collapse
|
2
|
Salgado Kiefer YCDS, Ferreira MB, da Luz JZ, Filipak Neto F, Oliveira Ribeiro CAD. Glyphosate and aminomethylphosphonic acid metabolite (AMPA) modulate the phenotype of murine melanoma B16-F1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104429. [PMID: 38527596 DOI: 10.1016/j.etap.2024.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Pesticides are contaminants run-offs from agricultural areas with a global concern due to their toxicity for non-target organisms. The Brazilian Health Surveillance Agency reported about 63% of the food contain pesticide residues. Glyphosate is a herbicide used worldwide but its toxicity is not a consensus among specialists around the world. AMPA (aminomethylphosphonic acid) is a glyphosate metabolite that can be more toxic than the parental molecule. Melanoma murine B16-F1 cells were exposed to glyphosate and AMPA to investigate the cell profile and possible induction to a more malignant phenotype. Glyphosate modulated the multi-drug resistance mechanisms by ABCB5 gene expression, decreasing cell attachment, increasing cell migration and inducing extracellular vesicles production, and the cells exposed to AMPA revealed potential damages to DNA. The present study observed that AMPA exhibits high cytotoxicity, which suggests a potential impact on non-tumor cells, which are, in general, more susceptible to chemical exposure. Conversely, glyphosate favored a more metastatic and chemoresistant behavior in cancer cells, highlighting the importance of additional research in this area.
Collapse
Affiliation(s)
- Yvanna Carla de Souza Salgado Kiefer
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR CEP 81.531-990, Brazil
| | - Marianna Boia Ferreira
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR CEP 81.531-990, Brazil
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR CEP 81.531-990, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR CEP 81.531-990, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Cx. Postal 19031, Curitiba, PR CEP 81.531-990, Brazil.
| |
Collapse
|
3
|
Mohy-Ud-Din W, Chen F, Bashir S, Akhtar MJ, Asghar HN, Farooqi ZUR, Zulfiqar U, Haider FU, Afzal A, Alqahtani MD. Unlocking the potential of glyphosate-resistant bacterial strains in biodegradation and maize growth. Front Microbiol 2023; 14:1285566. [PMID: 38204469 PMCID: PMC10777731 DOI: 10.3389/fmicb.2023.1285566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Glyphosate [N-(phosphonomethyl)-glycine] is a non-selective herbicide with a broad spectrum activity that is commonly used to control perennial vegetation in agricultural fields. The widespread utilization of glyphosate in agriculture leads to soil, water, and food crop contamination, resulting in human and environmental health consequences. Therefore, it is imperative to devise techniques for enhancing the degradation of glyphosate in soil. Rhizobacteria play a crucial role in degrading organic contaminants. Limited work has been done on exploring the capabilities of indigenously existing glyphosate-degrading rhizobacteria in Pakistani soils. This research attempts to discover whether native bacteria have the glyphosate-degrading ability for a sustainable solution to glyphosate contamination. Therefore, this study explored the potential of 11 native strains isolated from the soil with repeated glyphosate application history and showed resistance against glyphosate at higher concentrations (200 mg kg-1). Five out of eleven strains outperformed in glyphosate degradation and plant growth promotion. High-pressure liquid chromatography showed that, on average, these five strains degraded 98% glyphosate. In addition, these strains promote maize seed germination index and shoot and root fresh biomass up to 73 and 91%, respectively. Furthermore, inoculation gave an average increase of acid phosphatase (57.97%), alkaline phosphatase (1.76-fold), and dehydrogenase activity (1.75-fold) in glyphosate-contaminated soil. The findings indicated the importance of using indigenous rhizobacteria to degrade glyphosate. Therefore, by maintaining soil health, indigenous soil biodiversity can work effectively for the bioremediation of contaminated soils and sustainable crop production in a world facing food security.
Collapse
Affiliation(s)
- Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Aneeqa Afzal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Venditti S, Kiesch A, Hansen J. Fate of glyphosate and its metabolite AminoMethylPhosponic acid (AMPA) from point source through wastewater sludge and advanced treatment. CHEMOSPHERE 2023; 340:139843. [PMID: 37619758 DOI: 10.1016/j.chemosphere.2023.139843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The fate of glyphosate and its metabolite AminoMethylPhosponic acid (AMPA) was followed at the catchment of the Sûre river, mainly characterized by small population density and small and medium-sized wastewater treatment plants (WWTPs). A high concentration of AMPA was found in water samples collected in inlet from different wastewater streams, the industry being the main contributor, while glyphosate resulted mainly in domestic origin. The two molecules were also monitored in the anaerobic digestion as in the supernatant produced after centrifugation (reject water). A total of 0.0713 and 2.24 g/d of glyphosate and AMPA respectively were regularly returned to the activated sludge tank (AST) indicating a 20% impact of the sludge management line on the global wastewater mass balance. Finally, the use of Constructed Wetlands (CWs) in Vertical Flow (VF) configuration was tested as a suitable technology to retain both glyphosate and AMPA (90 and up to 50% elimination respectively) and minimize their discharge into surface water.
Collapse
Affiliation(s)
- Silvia Venditti
- University of Luxembourg, Chair of Urban Water Management, 6, Rue Coudenhove-Kalergi, L-1359, Luxembourg.
| | - Anne Kiesch
- TR-Engineering, 86-88, Rue de l' Egalité, L-1456, Luxembourg.
| | - Joachim Hansen
- TR-Engineering, 86-88, Rue de l' Egalité, L-1456, Luxembourg.
| |
Collapse
|
5
|
Riedel R, Krahl K, Buder K, Böllmann J, Braun B, Martienssen M. Novel standard biodegradation test for synthetic phosphonates. J Microbiol Methods 2023; 212:106793. [PMID: 37543110 DOI: 10.1016/j.mimet.2023.106793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Determination of biodegradation of synthetic phosphonates such as aminotris(methylenephosphonic acid) (ATMP), ethylenediamine tetra(methylenephosphonic acid) (EDTMP), or diethylenetriamine penta(methylenephosphonic acid) (DTPMP) is a great challenge. Commonly, ready biodegradability of organic substances is assessed by OECD 301 standard tests. However, due to the chemical imbalance of carbon to phosphorus synthetic phosphonates do not promote microbial growth and, thus, limiting its biodegradation. Therefore, standard OECD test methods are not always reliable to predict the real biodegradability of phosphonates. In the presented study, we report the development of a standardized batch system suitable to synthetic phosphonates such as ATMP, EDTMP, DTPMP and others. The novel standard batch test is applicable with pure strains, activated sludge from different wastewater treatment plants (i.e., municipal and industrial), and with tap water as inoculum. We optimized the required calcium and magnesium exposure levels as well as the amount of the start inoculum biomass. We demonstrated that our test also allows to determine several parameters including ortho-phosphate (o-PO43-), total phosphorus (TP), ammonium (NH4+) and total organic carbon (TOC). In addition, also LC/MS analyses of cell-free medium is applicable for determining the mother compounds and metabolites. We applied our optimized standardized batch with selected phosphonates and evidenced that the chemical structure has a major influence of the microbial growth rates. Thus, our novel batch test overcomes drawbacks of the OECD 301 test series for determination of easy biodegradability for stoichiometric imbalanced organic compounds such as phosphonates.
Collapse
Affiliation(s)
- Ramona Riedel
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Biotechnology of Water Treatment, 03046 Cottbus, Germany.
| | - Kathrin Krahl
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Biotechnology of Water Treatment, 03046 Cottbus, Germany
| | - Kai Buder
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Biotechnology of Water Treatment, 03046 Cottbus, Germany
| | - Jörg Böllmann
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Biotechnology of Water Treatment, 03046 Cottbus, Germany
| | - Burga Braun
- University of Technology Berlin, Department of Environmental Microbiology, 10587 Berlin, Germany
| | - Marion Martienssen
- Brandenburg University of Technology Cottbus-Senftenberg, Institute of Environmental Technology, Biotechnology of Water Treatment, 03046 Cottbus, Germany
| |
Collapse
|
6
|
Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S. Binding interaction of glyphosate with glyphosate oxidoreductase and C-P lyase: Molecular docking and molecular dynamics simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124927. [PMID: 33450511 DOI: 10.1016/j.jhazmat.2020.124927] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 05/12/2023]
Abstract
Widespread application of glyphosate poses a threat to living organisms. Microbial strains are able to degrade glyphosate via contrasting metabolic pathways with the help of enzymes. Glyphosate oxidoreductase (GOX) and C-P lyase are the key enzymes for the biodegradation of glyphosate and its intermediate metabolite aminomethylphosphonic acid (AMPA) in microbes. The microbial degradation of glyphosate has been reported, but the underlying molecular mechanism is still unclear. Therefore, in this study, the interaction mechanism of GOX and C-P lyase with glyphosate and AMPA were investigated by using molecular docking and molecular dynamics (MD) simulations. The results indicate that glyphosate contacts with the active site of GOX and C-P lyase by hydrogen bonds as well as hydrophobic and van der Waals interactions in aqueous solution to maintain its stability. The presence of glyphosate and AMPA in the active site significantly changes the conformation of GOX and C-P lyase. The results of the MD simulations confirm that GOX and C-P lyase complexes are stable during the catalytic reaction. This study offers a molecular level of understanding of the expression and function of GOX and C-P lyase for the bioremediation of glyphosate.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Uttarakhand 263136, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|