1
|
Trallero J, Camacho M, Marín-García M, Álvarez-Marimon E, Benseny-Cases N, Barnadas-Rodríguez R. Properties and cellular uptake of photo-triggered mixed metallosurfactant vesicles intended for controlled CO delivery in gas therapy. Colloids Surf B Biointerfaces 2023; 228:113422. [PMID: 37356136 DOI: 10.1016/j.colsurfb.2023.113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The scientific relevance of carbon monoxide has increased since it was discovered that it is a gasotransmitter involved in several biological processes. This fact stimulated research to find a secure and targeted delivery and lead to the synthesis of CO-releasing molecules. In this paper we present a vesicular CO delivery system triggered by light composed of a synthetized metallosurfactant (TCOL10) with two long carbon chains and a molybdenum-carbonyl complex. We studied the characteristics of mixed TCOL10/phosphatidylcholine metallosomes of different sizes. Vesicles from 80 to 800 nm in diameter are mainly unilamellar, do not disaggregate upon dilution, in the dark are physically and chemically stable at 4 °C for at least one month, and exhibit a lag phase of about 4 days before they show a spontaneous CO release at 37 °C. Internalization of metallosomes by cells was studied as function of the incubation time, and vesicle concentration and size. Results show that large vesicles are more efficiently internalized than the smaller ones in terms of the percentage of cells that show TCOL10 and the amount of drug that they take up. On balance, TCOL10 metallosomes constitute a promising and viable approach for efficient delivery of CO to biological systems.
Collapse
Affiliation(s)
- Jan Trallero
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Camacho
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - Centre CERCA, Genomics of Complex Diseases, Barcelona, Spain
| | - Maribel Marín-García
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Elena Álvarez-Marimon
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Núria Benseny-Cases
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain; Consorcio para la Construcción Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Catalonia, Spain.
| | - Ramon Barnadas-Rodríguez
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Taguchi S, Kimura Y, Akiyama Y, Tachibana Y, Yamamoto T. Fluorescent Anisotropy Evaluation of Bicelle Formation Employing Carboxyl BODIPY and Pyrromethene. J Oleo Sci 2022; 71:353-362. [PMID: 35236795 DOI: 10.5650/jos.ess21295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bicelles are extensively used as the parent assemblies of functional membrane materials. This study characterizes membrane fluidity in fatty acid/detergent bicelles containing carboxyl boron-dipyrromethene (BODIPY C12) and pyrromethene as fluorescent probe molecules. The anisotropy value of BODIPY C12 and pyrromethene in the phospholipid vesicles depended on the phase state of the vesicles. The anisotropy of the fluorescent probe molecules in bicelles of oleic acid/3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropane sulfonate (OA/CHAPSO) was then evaluated. The OA/CHAPSO bicelles were prepared by mixing CHAPSO detergent solution with OA vesicles at different molar ratios, X OA (= [OA]/([OA]+[CHAPSO])). The anisotropies of the probes in the OA/CHAPSO bicelles increased with decreasing X OA. BODIPY C12 in the range 0.30 ≤ X OA ≤ 0.70 exhibited a distinctly larger anisotropy than pyrromethene. This result agreed with the increase in packing density associated with the adsorption of CHAPSO molecules on the OA bilayer membrane in the OA/CHAPSO bicelle, revealing that the anisotropy of BODIPY C12 molecule enables membrane-fluidity evaluation in OA/CHAPSO bicelles.
Collapse
Affiliation(s)
- Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Yuta Kimura
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Yuka Akiyama
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Yasuaki Tachibana
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Takuji Yamamoto
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| |
Collapse
|
3
|
Choi S, Kang B, Taguchi S, Umakoshi H, Kim K, Kwak MK, Jung HS. A Simple Method for Continuous Synthesis of Bicelles in Microfluidic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12255-12262. [PMID: 34645269 DOI: 10.1021/acs.langmuir.1c02024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bicelle has great potential for drug delivery systems due to its small size and biocompatibility. The conventional method of bicelle preparation contains a long process and harsh conditions, which limit its feasibility and damage the biological substances. For these reasons, a continuous manufacturing method in mild conditions has been demanded. Here, we propose a novel method for DMPC/DHPC bicelle synthesis based on a microfluidic device without heating and freezing processes. Bicelles were successfully prepared using this continuous method, which was identified by the physicochemical properties and morphologies of the synthesized assemblies. Experimental and analytical studies confirm that there is critical lipid concentration and critical mixing time for bicelle synthesis in this microfluidic system. Furthermore, a linear relation between the actual composition of bicelle and initial lipid ratio is deduced, and this enables the size of bicelles to be controlled.
Collapse
Affiliation(s)
- Sunghak Choi
- Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Bongsu Kang
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keesung Kim
- Research Institute of Advanced Materials, College of Engineering, Seoul National University, Seoul 08826, South Korea
| | - Moon Kyu Kwak
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Choi S, Kang B, Shimanouchi T, Kim K, Jung H. Continuous preparation of bicelles using hydrodynamic focusing method for bicelle to vesicle transition. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00133-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBicelle is one of the most stable phospholipid assemblies, which has tremendous applications in the research areas for drug delivery or structural studies of membrane proteins owing to its bio-membrane mimicking characteristics and high thermal stability. However, the conventional preparation method for bicelle demands complicated manufacturing processes and a long time so that the continuous synthesis method of bicelle using microfluidic chip has been playing an important role to expand its feasibility. We verified the general availability of hydrodynamic focusing method with microfluidic chip for bicelle synthesis using various kinds of lipids which have a phase transition temperature ranged from − 2 to 41 °C. Bicelle can be formed only when the inside temperature of microfluidic chip was over the phase transition temperature. Moreover, the concentration condition for bicelle formation varied depending on the lipids. Furthermore, the transition process characteristics from bicelle to vesicle were analyzed by effective q-value, mixing time and dilution condition. We verified that the size of transition vesicles was controlled according to the effective q-value, mixing time, and temperature.
Collapse
|
5
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|
6
|
Taguchi S, Kimura Y, Tachibana Y, Yamamoto T, Umakoshi H. Preparation of Bilayer Molecular Assembly from Fatty Acid and Detergent. KAGAKU KOGAKU RONBUN 2021. [DOI: 10.1252/kakoronbunshu.47.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo
| | - Yuta Kimura
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo
| | - Yasuaki Tachibana
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo
| | - Takuji Yamamoto
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|