1
|
Hussain B, Ma H, Wu Y, Ganesan S, Yu C, Dixit S, Singh S, Pu S. Efficient immobilization of enzyme on covalent organo-framework for remediation of pyrene-contaminated soil and degradation mechanism. Int J Biol Macromol 2025; 305:141234. [PMID: 39971053 DOI: 10.1016/j.ijbiomac.2025.141234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Bioremediation of polycyclic aromatic hydrocarbons (PAHs) using immobilized enzymes has garnered significant interest due to its cost-effectiveness, stability, and efficiency. In this regard enzyme laccase have been extensively used for the remediation of organic contaminants in aqueous solutions. However, the use of a single and/or free enzyme may not show better results due to its rapid degradation and loss of activity. Moreover, the use of immobilized enzymes for remediating specific PAH compounds in soil remains underexplored. Therefore, the aim of the present study was to prepare laccase (Trametes versicolor) immobilized on a covalent framework for pyrene remediation in soil. Results showed that the immobilized enzyme retained 51.13 % of the relative activity throughout the course of 50 days of storage and outperformed the free enzyme in terms of relative activity at higher pH values (6 and 7), and temperatures (60 °C and 70 °C). The immobilized enzyme achieved a 92.38 % pyrene degradation rate in soil and enhanced soil phenol oxidase (S-PhOx), peroxidase (S-POD), and catalase (S-CAT) activities by 95.15 %, 50.03 %, and 54.77 %, respectively, on day 50 compared to the control. Furthermore, it boosted the soil bacterial population, including Gemmatimonas, Luteimonas, Lysobacter, Massilia, Longimicrobiaceae, Symbiobacterium, Ponibacter, Bacillus, and Sphingomonas. PCA analysis revealed a strong positive correlation between pyrene degradation percentage and S-CAT, S-POD, Gemmatimonas, Longimicrobiaceae, and Symbiobacterium. Thus, the immobilized enzyme offers a promising and sustainable approach for PAH removal from soil.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - You Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Sivarasan Ganesan
- Department of Material Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140417, Punjab, India; Division of research and innovation, Uttaranchal University, Dehradun, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Yu S, Cheng J, Li K, Zhang S, Dong X, Paizullakhanov MS, Chen D. Preparation and application of laccase-immobilized magnetic biochar for effective degradation of endocrine disruptors: Efficiency and mechanistic analysis. Int J Biol Macromol 2025; 305:141167. [PMID: 39971055 DOI: 10.1016/j.ijbiomac.2025.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
This study immobilized laccase from Pleurotus ostreatus residue onto magnetic biochar for endocrine-disrupting chemical (EDC) degradation. The laccase, with a specific activity of 16.9 U/mg and a 45.8 % activity recovery, was immobilized via glutaraldehyde on magnetically modified biochar. The immobilized enzyme showed enhanced stability across pH 2-5, retained 86.4 % activity at 4 °C over 30 days, and maintained 65.2 % activity over eight cycles. It achieved degradation efficiencies of 90.87 % for BPA, 92.95 % for E2, and 80.87 % for EE2 within 24 h. Degradation mechanisms were analyzed via density functional theory and molecular docking.
Collapse
Affiliation(s)
- Shixin Yu
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266404, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Juntao Cheng
- Qingdao Zhangcun River Water Co., Ltd., Qingdao 266100, China
| | - Kai Li
- Qingdao Zhangcun River Water Co., Ltd., Qingdao 266100, China
| | - Shilei Zhang
- Qingdao Greensum Ecology Co., Ltd., Qingdao 266102, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | | - Dong Chen
- Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao 266404, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
3
|
Zhang Y, Li N, Chen L, Sheng X, Wang B, Zhang J, Ping Q, Shi Y. Effect of bamboo biochar preparation conditions on immobilization of laccase and its application. Int J Biol Macromol 2025; 306:141618. [PMID: 40032117 DOI: 10.1016/j.ijbiomac.2025.141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
In this paper, bamboo biochar was prepared and used for laccase immobilization. Biochar was prepared under different conditions (pyrolysis temperature, heating rate and dwell time) to understand biochar characteristics impacts on enzyme activity. The results showed that the preparation conditions had an important effect on the content of carboxyl groups on biochar. And the specific surface area is not the key factor affecting laccase immobilization in this study, which is a little different than before. The highest immobilized laccase activity (1404.17 U/g) was obtained when the biochar was heated to 300 °C at the rate of 15 °C/min and stayed for 1.5 h, and the carboxy group concentration was 0.490 mmol/g. Compared with free laccase (FL), the immobilized laccase on bamboo biochar (LBC) showed higher thermo-tolerant performance, more excellent acid-proof ability and reusability. Without any mediators, LBC displayed high degradation efficiency (74.72 %, 85.88 % and 94.53 %, respectively) for bisphenol A (BPA), malachite green (MG) and methyl orange (MO) in water. Our research demonstrates that the content of carboxyl group in biochar plays a decisive role in the immobilization of laccase and LBC has excellent performance in the effective removal of toxicant in water, which makes it a promising candidate for environmental recovery.
Collapse
Affiliation(s)
- Yuying Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Na Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China.
| | - Lianmei Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Xueru Sheng
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Bing Wang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Jian Zhang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Qingwei Ping
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian l16034, China
| | - Yan Shi
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
4
|
Zhu X, Cheng S, Fang Z, Zhen G, Lu X, Liu H, Qi J, Zhou Z, Zhang X, Wu Z. Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor. Microb Cell Fact 2025; 24:23. [PMID: 39819635 PMCID: PMC11740689 DOI: 10.1186/s12934-024-02611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/01/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants. However, the exploration of WRF in the context of sludge treatment remains an under-investigated area within the scientific community. The present investigation explores the application of WRF in the treatment of anaerobically digested sludge, offering a novel approach for the valorization of sludge resources. RESULTS In this study, WRF enzymes, manganese peroxidase (MnP) and lignin peroxidase (LiP), exhibited sustained high activities of approximately 102 U/L and 26 U/L, respectively, within the anaerobically digested sludge under a controlled pH of 5.5 within the growth system. These conditions were found to significantly enhance the treatment efficacy of the anaerobic sludge. The removal of soluble chemical oxygen demand (COD) and Total COD by Trametes versicolor powder was better than that of Phanerochaete chrysosporium powder. The treatment of sludge samples with WRF, specifically Phanerochaete chrysosporium powder, resulted in a significant reduction of ultraviolet radiation (UV254). Fourier-transform infrared spectroscopy (FTIR) analysis revealed that the application of Trametes versicolor powder exerted a notably pronounced impact on the functional groups present in sludge samples. Specifically, there was a significant decrease in the peak intensities corresponding to the C-O bonds, indicative of saccharide degradation, alongside an observable increase in the intensities of amide peaks, which is suggestive of protein synthesis enhancement. Microbial community analysis demonstrated that Phanerochaete chrysosporium was the predominant fungal species, exerting a significant regulatory role within the sludge ecosystem. CONCLUSION In conclusion, this research furnishes a robust scientific foundation for the utilization of WRF in the treatment of anaerobic digestion sludge. It elucidates the fungi's capacity to ameliorate the physicochemical attributes and microbial community composition within the sludge. Furthermore, the study offers a certain reference for the subsequent use of WRF in the treatment of other types of sludge.
Collapse
Affiliation(s)
- Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Shicai Cheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zexian Fang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Jing Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Xuedong Zhang
- Department of Environmental Engineering, Faculty of Environment and Ecology, Jiangnan University, Wuxi, 214122, PR China.
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
5
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
6
|
Yu H, Feng L, Abbas M, Liang X, Zhang T, Yang G, Liu Y, Xu M, An Y, Yang W. Enhancing enzymatic catalysis efficiency: Immobilizing laccase on HHSS for synergistic bisphenol A adsorption and biodegradation through optimized external surface utilization. Int J Biol Macromol 2024; 278:134586. [PMID: 39122072 DOI: 10.1016/j.ijbiomac.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Laccase, a prominent enzyme biomacromolecule, exhibits promising catalytic efficiency in degrading phenolic compounds like bisphenol A (BPA). The laccase immobilized on conventional materials frequently demonstrates restricted loading and suboptimal catalytic performance. Hence, there is a pressing need to optimized external surface utilization to enhance catalytic performance. Herein, we synthesized amino-functionalized modified silica particles with a hierarchical hollow silica spherical (HHSS) structure for laccase immobilization via crosslinking, resulting in HHSS-LE biocatalysts. Through Box-Behnken design (BBD) and response surface methodology (RSM), we achieved a remarkably high enzyme loading of up to 213.102 mg/g. The synergistic effect of adsorption by HHSS and degradation by laccase facilitated efficient removal of BPA. The HHSS-LE demonstrated superior BPA removal capabilities, with efficiencies exceeding 100 % in the 50-200 mg/L BPA concentration range. Compared to MCM-41 and solid silica spheres (SSS), HHSS showed the highest enzyme loading capacity and catalytic activity, underscoring its superior external surface utilization rate per unit mass. Remarkably, the HHSS-LE biocatalyst exhibited remarkable recyclability even after 11 successive cycles of reuse. By preparing high immobilization rate with efficient external surface utilization, this study lays the foundation for the design of universally applicable and efficient enzyme immobilization catalysts.
Collapse
Affiliation(s)
- Hongxia Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Lijun Feng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Mohamed Abbas
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore; Refractories, Ceramics and Building Materials Department, National Research Centre, El-Behouth Str., 12622 Cairo, Egypt
| | - Xue Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Tianjing Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Guiping Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yong Liu
- Guizhou Juneng Chemical Co, Ltd, Huishui County of Guizhou Province, Huishui 550601, PR China
| | - Meisong Xu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yan An
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Wanliang Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore; Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zou M, Tian W, Chu M, Lu Z, Liu B, Xu D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163057. [PMID: 36966832 DOI: 10.1016/j.scitotenv.2023.163057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Bingkun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dongpo Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
9
|
Yang J, Xu SY, Zhang T, Zhao ZQ, Xie XJ, Wang WF, Zhang C, Zheng HB. A dual bacterial alliance removed erythromycin residues by immobilizing on activated carbon. BIORESOURCE TECHNOLOGY 2023:129288. [PMID: 37315621 DOI: 10.1016/j.biortech.2023.129288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Removing erythromycin from the environment is a major challenge. In this study, a dual microbial consortium (Delftia acidovorans ERY-6A and Chryseobacterium indologenes ERY-6B) capable of degrading erythromycin was isolated, and the erythromycin biodegradation products were studied. Coconut shell activated carbon was modified and its adsorption characteristics and erythromycin removal efficiency of the immobilized cells were studied. It was indicated that alkali-modified and water-modified coconut shell activated carbon and the dual bacterial system had excellent erythromycin removal ability. The dual bacterial system follows a new biodegradation pathway to degrade erythromycin. The immobilized cells removed 95% of erythromycin at a concentration of 100 mg L-1 within 24 h through pore adsorption, surface complexation, hydrogen bonding, and biodegradation. This study provides a new erythromycin removal agent and for the first time describes the genomic information of erythromycin-degrading bacteria, providing new clues regarding bacterial cooperation and efficient erythromycin removal.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuang-Yan Xu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Jie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Fan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Cheng Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
11
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Site-Specific Covalent Immobilization of Methylobacterium extorquens Non-Blue Laccse Melac13220 on Fe3O4 Nanoparticles by Aldehyde Tag. Catalysts 2022. [DOI: 10.3390/catal12111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present study, the non-blue laccase Melac13220 from Methylobacterium extorquens was immobilized using three methods to overcome problems related to the stability and reusability of the free enzyme: entrapment of the enzyme with sodium alginate, crosslinking of the enzyme with glutaraldehyde and chitosan-, and site-specific covalent immobilization of the enzyme on Fe3O4 nanoparticles by an aldehyde tag. The site-specific covalent immobilization method showed the highest immobilization efficiency and vitality recovery. The optimum temperature of Melac13220 was increased from 65 °C to 80 °C. Immobilized Melac13220 showed significant tolerance to some organic solvents and maintained approximately 80% activity after 10 cycles of use. Differential scanning calorimetry (DSC) indicated that the melting temperature of the enzyme was increased (from 57 °C to 79 °C). Immobilization of Melac13220 also led to improvement in dye decolorization such that Congo Red was completely decolorized within 10 h. The immobilized enzyme can be easily prepared without purification, demonstrating the advantages of using the aldehyde tag strategy and providing a reference for the practical application of different immobilized laccase methods in the industrial field.
Collapse
|
13
|
Wang Z, Ren D, Zhang X, Zhang S, Chen W. Adsorption-degradation of malachite green using alkali-modified biochar immobilized laccase under multi-methods. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: degradation mechanism and mineralization pathway. Heliyon 2022; 8:e09919. [PMID: 35865982 PMCID: PMC9294056 DOI: 10.1016/j.heliyon.2022.e09919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
As a hazardous organic chemical raw material, Bisphenol A (BPA) has attracted a great deal of scientific and public attention. In this study, the chitosan functionalized halloysite nanotubes immobilized laccase (lac@CS-HNTs) was prepared by simultaneous adsorption-covalent binding method to remove BPA for the first time. We optimized the preparation of lac@CS-NHTs by controlling one-factor variable method and response surface methodology (RSM). The cubic polynomial regression model via Design-Expert 12 was developed to describe the optimal preparation conditions of immobilized laccase. Under the optimal conditions, lac@CS-NHTs obtained the maximum enzyme activity, and the enzyme loading was as high as 60.10 mg/g. The results of batch removal experiment of BPA showed that under the optimum treatment condition, the BPA removal rate of lac@CS-NHTs, FL and heat-inactivated lac@CS-NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated that the contribution of biodegradation was greater than adsorption. In addition, the relative activity of lac@CS-NHTs dropped to about 44.24 % after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs have the potential to reduce costs in practical applications. Finally, the possible degradation mechanism and mineralization pathway of BPA were given via High-performance liquid chromatography (HPLC) analysis and gas chromatography-mass spectrometry (GC-MS) analysis.
Collapse
|