1
|
Wilde M, Poulsen RE, Qin W, Arnold J, Favre‐Bulle IA, Mattingley JB, Scott EK, Stednitz SJ. Evidence for Auditory Stimulus-Specific Adaptation But Not Deviance Detection in Larval Zebrafish Brains. J Comp Neurol 2025; 533:e70046. [PMID: 40139932 PMCID: PMC11946781 DOI: 10.1002/cne.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/11/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Animals receive a constant stream of sensory input, and detecting changes in this sensory landscape is critical to their survival. One signature of change detection in humans is the auditory mismatch negativity (MMN), a neural response to unexpected stimuli that deviate from a predictable sequence. This process requires the auditory system to adapt to specific repeated stimuli while remaining sensitive to novel input (stimulus-specific adaptation [SSA]). MMN was originally described in humans, and equivalent responses have been found in other mammals and birds, but it is not known to what extent this deviance detection circuitry is evolutionarily conserved. Here we present the first evidence for SSA in the brain of a teleost fish, using whole-brain calcium imaging of larval zebrafish at single-neuron resolution with selective plane illumination microscopy. We found frequency-specific responses across the brain with variable response amplitudes for frequencies of the same volume and created a loudness curve to model this effect. We presented an auditory "oddball" stimulus in an otherwise predictable train of pure tone stimuli and did not find a population of neurons with specific responses to deviant tones that were not otherwise explained by SSA. Further, we observed no deviance responses to an unexpected omission of a sound in a repetitive sequence of white noise bursts. These findings extend the known scope of auditory adaptation and deviance responses across the evolutionary tree and lay groundwork for future studies to describe the circuitry underlying auditory adaptation at the level of individual neurons.
Collapse
Affiliation(s)
- Maya Wilde
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Rebecca E. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyAustralia
| | - Wei Qin
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Joshua Arnold
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
| | - Itia A. Favre‐Bulle
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- School of Mathematics and PhysicsUniversity of QueenslandBrisbaneAustralia
| | - Jason B. Mattingley
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- School of PsychologyUniversity of QueenslandBrisbaneAustralia
| | - Ethan K. Scott
- Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Sarah J. Stednitz
- Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
2
|
Kulgod A, van der Linden D, França LGS, Jackson M, Zamansky A. Non-invasive canine electroencephalography (EEG): a systematic review. BMC Vet Res 2025; 21:73. [PMID: 39966923 PMCID: PMC11834203 DOI: 10.1186/s12917-025-04523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The emerging field of canine cognitive neuroscience uses neuroimaging tools such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to map the cognitive processes of dogs to neural substrates in their brain. Within the past decade, the non-invasive use of EEG has provided real-time, accessible, and portable neuroimaging insight into canine cognitive processes. To promote systematization and create an overview of framings, methods and findings for future work, we provide a systematic review of non-invasive canine EEG studies (N=22), dissecting their study makeup, technical setup, and analysis frameworks and highlighting emerging trends. We further propose new directions of development, such as the standardization of data structures and integrating predictive modeling with descriptive statistical approaches. Our review ends by underscoring the advances and advantages of EEG-based canine cognitive neuroscience and the potential for accessible canine neuroimaging to inform both fundamental sciences as well as practical applications for cognitive neuroscience, working dogs, and human-canine interactions.
Collapse
|
3
|
Déaux EC, Piette T, Gaunet F, Legou T, Arnal L, Giraud AL. Dog-human vocal interactions match dogs' sensory-motor tuning. PLoS Biol 2024; 22:e3002789. [PMID: 39352912 PMCID: PMC11444399 DOI: 10.1371/journal.pbio.3002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Within species, vocal and auditory systems presumably coevolved to converge on a critical temporal acoustic structure that can be best produced and perceived. While dogs cannot produce articulated sounds, they respond to speech, raising the question as to whether this heterospecific receptive ability could be shaped by exposure to speech or remains bounded by their own sensorimotor capacity. Using acoustic analyses of dog vocalisations, we show that their main production rhythm is slower than the dominant (syllabic) speech rate, and that human-dog-directed speech falls halfway in between. Comparative exploration of neural (electroencephalography) and behavioural responses to speech reveals that comprehension in dogs relies on a slower speech rhythm tracking (delta) than humans' (theta), even though dogs are equally sensitive to speech content and prosody. Thus, the dog audio-motor tuning differs from humans', and we hypothesise that humans may adjust their speech rate to this shared temporal channel as means to improve communication efficacy.
Collapse
Affiliation(s)
- Eloïse C. Déaux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Théophane Piette
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florence Gaunet
- Aix-Marseille University and CNRS, Laboratoire de Psychologie Cognitive (UMR 7290), Marseille, France
| | - Thierry Legou
- Aix Marseille University and CNRS, Laboratoire Parole et Langage (UMR 6057), Aix-en-Provence, France
| | - Luc Arnal
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| |
Collapse
|
4
|
Wu L, Mei S, Yu S, Han S, Zhang YQ. Shank3 mutations enhance early neural responses to deviant tones in dogs. Cereb Cortex 2023; 33:10546-10557. [PMID: 37585733 DOI: 10.1093/cercor/bhad302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Both enhanced discrimination of low-level features of auditory stimuli and mutations of SHANK3 (a gene that encodes a synaptic scaffolding protein) have been identified in autism spectrum disorder patients. However, experimental evidence regarding whether SHANK3 mutations lead to enhanced neural processing of low-level features of auditory stimuli is lacking. The present study investigated this possibility by examining effects of Shank3 mutations on early neural processing of pitch (tone frequency) in dogs. We recorded electrocorticograms from wild-type and Shank3 mutant dogs using an oddball paradigm in which deviant tones of different frequencies or probabilities were presented along with other tones in a repetitive stream (standards). We found that, relative to wild-type dogs, Shank3 mutant dogs exhibited larger amplitudes of early neural responses to deviant tones and greater sensitivity to variations of deviant frequencies within 100 ms after tone onsets. In addition, the enhanced early neural responses to deviant tones in Shank3 mutant dogs were observed independently of the probability of deviant tones. Our findings highlight an essential functional role of Shank3 in modulations of early neural detection of novel sounds and offer new insights into the genetic basis of the atypical auditory information processing in autism patients.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Mei
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Shan Yu
- Brainnetome Center and State Key Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Yong Q Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Reicher V, Bálint A, Újváry D, Gácsi M. Non-invasive sleep EEG measurement in hand raised wolves. Sci Rep 2022; 12:9792. [PMID: 35697910 PMCID: PMC9191399 DOI: 10.1038/s41598-022-13643-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Sleep research greatly benefits from comparative studies to understand the underlying physiological and environmental factors affecting the different features of sleep, also informing us about the possible evolutionary changes shaping them. Recently, the domestic dog became an exceedingly valuable model species in sleep studies, as the use of non-invasive polysomnography methodologies enables direct comparison with human sleep data. In this study, we applied the same polysomnography protocol to record the sleep of dog’s closest wild relative, the wolf. We measured the sleep of seven captive (six young and one senior), extensively socialized wolves using a fully non-invasive sleep EEG methodology, originally developed for family dogs. We provide the first descriptive analysis of the sleep macrostructure and NREM spectral power density of wolves using a completely non-invasive methodology. For (non-statistical) comparison, we included the same sleep data of similarly aged dogs. Although our sample size was inadequate to perform statistical analyses, we suggest that it may form the basis of an international, multi-site collection of similar samples using our methodology, allowing for generalizable, unbiased conclusions. As we managed to register both macrostructural and spectral sleep data, our procedure appears to be suitable for collecting valid data in other species too, increasing the comparability of non-invasive sleep studies.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary. .,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Anna Bálint
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Dóra Újváry
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.,Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Bálint A, Eleőd H, Magyari L, Kis A, Gácsi M. Differences in dogs' event-related potentials in response to human and dog vocal stimuli; a non-invasive study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211769. [PMID: 35401994 PMCID: PMC8984299 DOI: 10.1098/rsos.211769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Recent advances in the field of canine neuro-cognition allow for the non-invasive research of brain mechanisms in family dogs. Considering the striking similarities between dog's and human (infant)'s socio-cognition at the behavioural level, both similarities and differences in neural background can be of particular relevance. The current study investigates brain responses of n = 17 family dogs to human and conspecific emotional vocalizations using a fully non-invasive event-related potential (ERP) paradigm. We found that similarly to humans, dogs show a differential ERP response depending on the species of the caller, demonstrated by a more positive ERP response to human vocalizations compared to dog vocalizations in a time window between 250 and 650 ms after stimulus onset. A later time window between 800 and 900 ms also revealed a valence-sensitive ERP response in interaction with the species of the caller. Our results are, to our knowledge, the first ERP evidence to show the species sensitivity of vocal neural processing in dogs along with indications of valence sensitive processes in later post-stimulus time periods.
Collapse
Affiliation(s)
- Anna Bálint
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Huba Eleőd
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Lilla Magyari
- MTA-ELTE ‘Lendület’ Neuroethology of Communication Research Group, Hungarian Academy of Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Social Studies, University of Stavanger, Stavanger, Norway
| | - Anna Kis
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences,Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Mori C, Okanoya K. Mismatch Responses Evoked by Sound Pattern Violation in the Songbird Forebrain Suggest Common Auditory Processing With Human. Front Physiol 2022; 13:822098. [PMID: 35309047 PMCID: PMC8927687 DOI: 10.3389/fphys.2022.822098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Learning sound patterns in the natural auditory scene and detecting deviant patterns are adaptive behaviors that aid animals in predicting future events and behaving accordingly. Mismatch negativity (MMN) is a component of the event-related potential (ERP) that is reported in humans when they are exposed to unexpected or rare stimuli. MMN has been studied in several non-human animals using an oddball task by presenting deviant pure tones that were interspersed within a sequence of standard pure tones and comparing the neural responses. While accumulating evidence suggests the homology of non-human animal MMN-like responses (MMRs) and human MMN, it is still not clear whether the function and neural mechanisms of MMRs and MMN are comparable. The Java sparrow (Lonchura oryzivora) is a songbird that is a vocal learner, is highly social, and maintains communication with flock members using frequently repeated contact calls and song. We expect that the songbird is a potentially useful animal model that will broaden our understanding of the characterization of MMRs. Due to this, we chose this species to explore MMRs to the deviant sounds in the single sound oddball task using both pure tones and natural vocalizations. MMRs were measured in the caudomedial nidopallium (NCM), a higher-order auditory area. We recorded local field potentials under freely moving conditions. Significant differences were observed in the negative component between deviant and standard ERPs, both to pure tones and natural vocalizations in the oddball sequence. However, the subsequent experiments using the randomized standard sequence and regular pattern sequence suggest the possibility that MMR elicited in the oddball paradigm reflects the adaptation to a repeated standard sound but not the genuine deviance detection. Furthermore, we presented contact call triplet sequences and investigated MMR in the NCM in response to sound sequence order. We found a significant negative shift in response to a difference in sequence pattern. This demonstrates MMR elicited by violation of the pattern of the triplet sequence and the ability to extract sound sequence information in the songbird auditory forebrain. Our study sheds light on the electrophysiological properties of auditory sensory memory processing, expanding the scope of characterization of MMN-like responses beyond simple deviance detection, and provides a comparative perspective on syntax processing in human.
Collapse
Affiliation(s)
- Chihiro Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Brain Science, Wako, Japan
- *Correspondence: Kazuo Okanoya,
| |
Collapse
|
8
|
EEG readings in dogs depending on their living condition and training. Preliminary study. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Boros M, Magyari L, Török D, Bozsik A, Deme A, Andics A. Neural processes underlying statistical learning for speech segmentation in dogs. Curr Biol 2021; 31:5512-5521.e5. [PMID: 34717832 DOI: 10.1016/j.cub.2021.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
To learn words, humans extract statistical regularities from speech. Multiple species use statistical learning also to process speech, but the neural underpinnings of speech segmentation in non-humans remain largely unknown. Here, we investigated computational and neural markers of speech segmentation in dogs, a phylogenetically distant mammal that efficiently navigates humans' social and linguistic environment. Using electroencephalography (EEG), we compared event-related responses (ERPs) for artificial words previously presented in a continuous speech stream with different distributional statistics. Results revealed an early effect (220-470 ms) of transitional probability and a late component (590-790 ms) modulated by both word frequency and transitional probability. Using fMRI, we searched for brain regions sensitive to statistical regularities in speech. Structured speech elicited lower activity in the basal ganglia, a region involved in sequence learning, and repetition enhancement in the auditory cortex. Speech segmentation in dogs, similar to that of humans, involves complex computations, engaging both domain-general and modality-specific brain areas. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marianna Boros
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Lilla Magyari
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Norwegian Reading Centre for Reading Education and Research, Faculty of Arts and Education, University of Stavanger, Professor Olav Hanssens vei 10, 4036 Stavanger, Norway
| | - Dávid Török
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Anett Bozsik
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, István utca 2, Hungary
| | - Andrea Deme
- Department of Applied Linguistics and Phonetics, Eötvös Loránd University, 1088 Budapest, Múzeum krt. 4/A, Hungary; MTA-ELTE "Lendület" Lingual Articulation Research Group, 1088 Budapest, Múzeum krt. 4/A, Hungary
| | - Attila Andics
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| |
Collapse
|
10
|
Magyari L, Huszár Z, Turzó A, Andics A. Event-related potentials reveal limited readiness to access phonetic details during word processing in dogs. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200851. [PMID: 33489257 PMCID: PMC7813267 DOI: 10.1098/rsos.200851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/05/2020] [Indexed: 05/18/2023]
Abstract
While dogs have remarkable abilities for social cognition and communication, the number of words they learn to recognize typically remains very low. The reason for this limited capacity is still unclear. We hypothesized that despite their human-like auditory abilities for analysing speech sounds, their word processing capacities might be less ready to access phonetic details. To test this, we developed procedures for non-invasive measurement of event-related potentials (ERPs) for language stimuli in awake dogs (n = 17). Dogs listened to familiar instruction words and phonetically similar and dissimilar nonsense words. We compared two different artefact cleaning procedures on the same data; they led to similar results. An early (200-300 ms; only after one of the cleaning procedures) and a late (650-800 ms; after both cleaning procedures) difference was present in the ERPs for known versus phonetically dissimilar nonsense words. There were no differences between the ERPs for known versus phonetically similar nonsense words. ERPs of dogs who heard the instructions more often also showed larger differences between instructions and dissimilar nonsense words. The study revealed not only dogs' sensitivity to known words, but also their limited capacity to access phonetic details. Future work should confirm the reported ERP correlates of word processing abilities in dogs.
Collapse
Affiliation(s)
- L. Magyari
- MTA-ELTE ‘Lendület’ Neuroethology of Communication Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
- Department of Cognitive Psychology, Institute of Psychology, Eötvös Loránd University, Budapest 1064, Hungary
- Author for correspondence: L. Magyari e-mail:
| | - Zs. Huszár
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - A. Turzó
- MTA-ELTE ‘Lendület’ Neuroethology of Communication Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - A. Andics
- MTA-ELTE ‘Lendület’ Neuroethology of Communication Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| |
Collapse
|
11
|
Putative TAAR5 agonist alpha-NETA affects event-related potentials in oddball paradigm in awake mice. Brain Res Bull 2020; 158:116-121. [PMID: 32151716 DOI: 10.1016/j.brainresbull.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022]
Abstract
Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice. Event-related potentials have been recorded from awake mice in oddball paradigms before and after the alpha-NETA administration. Alpha-NETA has been found to decrease N40 MMN-like difference, which resulted from the increased response to standard stimuli. An opposite effect has been found for the P80 component: the amplitude increased in response both to standard and deviant stimuli. A significant increase in N40 peak latency after the alpha-NETA administration has been found. This may suggest a reduced speed of information processing similar to the increase in P50 and N100 components latencies in schizophrenia patients. These results provide new evidence for a role of TAAR5 in cognitive processes.
Collapse
|
12
|
Shiramatsu TI, Takahashi H. Mismatch-negativity (MMN) in animal models: Homology of human MMN? Hear Res 2020; 399:107936. [PMID: 32197715 DOI: 10.1016/j.heares.2020.107936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Mismatch negativity (MMN) has long been considered to be one of the deviance-detecting neural characteristics. Animal models exhibit similar neural activities, called MMN-like responses; however, there has been considerable debate on whether MMN-like responses are homologous to MMN in humans. Herein, we reviewed several studies that compared the electrophysiological, pharmacological, and functional properties of MMN-like responses and adaptation-exhibiting middle-latency responses (MLRs) in animals with those in humans. Accumulating evidence suggests that there are clear differences between MMN-like responses and MLRs, in particular that MMN-like responses can be distinguished from mere effects of adaptation, i.e., stimulus-specific adaptation. Finally, we discuss a new direction for research on MMN-like responses by introducing our recent work, which demonstrated that MMN-like responses represent empirical salience of deviant stimuli, suggesting a new functional role of MMN beyond simple deviance detection.
Collapse
Affiliation(s)
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
13
|
Prichard A, Cook PF, Spivak M, Chhibber R, Berns GS. Awake fMRI Reveals Brain Regions for Novel Word Detection in Dogs. Front Neurosci 2018; 12:737. [PMID: 30374286 PMCID: PMC6196269 DOI: 10.3389/fnins.2018.00737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
How do dogs understand human words? At a basic level, understanding would require the discrimination of words from non-words. To determine the mechanisms of such a discrimination, we trained 12 dogs to retrieve two objects based on object names, then probed the neural basis for these auditory discriminations using awake-fMRI. We compared the neural response to these trained words relative to "oddball" pseudowords the dogs had not heard before. Consistent with novelty detection, we found greater activation for pseudowords relative to trained words bilaterally in the parietotemporal cortex. To probe the neural basis for representations of trained words, searchlight multivoxel pattern analysis (MVPA) revealed that a subset of dogs had clusters of informative voxels that discriminated between the two trained words. These clusters included the left temporal cortex and amygdala, left caudate nucleus, and thalamus. These results demonstrate that dogs' processing of human words utilizes basic processes like novelty detection, and for some dogs, may also include auditory and hedonic representations.
Collapse
Affiliation(s)
- Ashley Prichard
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Peter F. Cook
- Psychology, New College of Florida, Sarasota, FL, United States
| | - Mark Spivak
- Comprehensive Pet Therapy, Atlanta, GA, United States
| | - Raveena Chhibber
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Gregory S. Berns
- Department of Psychology, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Honing H, Bouwer FL, Prado L, Merchant H. Rhesus Monkeys ( Macaca mulatta) Sense Isochrony in Rhythm, but Not the Beat: Additional Support for the Gradual Audiomotor Evolution Hypothesis. Front Neurosci 2018; 12:475. [PMID: 30061809 PMCID: PMC6054994 DOI: 10.3389/fnins.2018.00475] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
Charles Darwin suggested the perception of rhythm to be common to all animals. While only recently experimental research is finding some support for this claim, there are also aspects of rhythm cognition that appear to be species-specific, such as the capability to perceive a regular pulse (or beat) in a varying rhythm. In the current study, using EEG, we adapted an auditory oddball paradigm that allows for disentangling the contributions of beat perception and isochrony to the temporal predictability of the stimulus. We presented two rhesus monkeys (Macaca mulatta) with a rhythmic sequence in two versions: an isochronous version, that was acoustically accented such that it could induce a duple meter (like a march), and a jittered version using the same acoustically accented sequence but that was presented in a randomly timed fashion, as such disabling beat induction. The results reveal that monkeys are sensitive to the isochrony of the stimulus, but not its metrical structure. The MMN was influenced by the isochrony of the stimulus, resulting in a larger MMN in the isochronous as opposed to the jittered condition. However, the MMN for both monkeys showed no interaction between metrical position and isochrony. So, while the monkey brain appears to be sensitive to the isochrony of the stimulus, we find no evidence in support of beat perception. We discuss these results in the context of the gradual audiomotor evolution (GAE) hypothesis (Merchant and Honing, 2014) that suggests beat-based timing to be omnipresent in humans but only weakly so or absent in non-human primates.
Collapse
Affiliation(s)
- Henkjan Honing
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur L Bouwer
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Luis Prado
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| | - Hugo Merchant
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| |
Collapse
|
15
|
Bunford N, Reicher V, Kis A, Pogány Á, Gombos F, Bódizs R, Gácsi M. Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog. Sci Rep 2018; 8:7109. [PMID: 29740040 PMCID: PMC5940857 DOI: 10.1038/s41598-018-25546-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5-7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep.
Collapse
Affiliation(s)
- Nóra Bunford
- Eötvös Loránd University, Institute of Biology, Department of Ethology, 1117, Budapest, Hungary.
- Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, 1117, Budapest, Hungary.
| | - Vivien Reicher
- Budapest University of Technology and Economics, Department of Cognitive Science, 1111, Budapest, Hungary
| | - Anna Kis
- Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, 1117, Budapest, Hungary
| | - Ákos Pogány
- Eötvös Loránd University, Institute of Biology, Department of Ethology, 1117, Budapest, Hungary
| | - Ferenc Gombos
- Pázmány Péter Catholic University, Faculty of Humanities and Social Sciences, 2087, Piliscsaba, Hungary
| | - Róbert Bódizs
- Budapest University of Technology and Economics, Department of Cognitive Science, 1111, Budapest, Hungary
- Semmelweis University, Institute of Behavioural Sciences, 1089, Budapest, Hungary
| | - Márta Gácsi
- Eötvös Loránd University, Institute of Biology, Department of Ethology, 1117, Budapest, Hungary
- MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| |
Collapse
|
16
|
Identification of TAAR5 Agonist Activity of Alpha-NETA and Its Effect on Mismatch Negativity Amplitude in Awake Rats. Neurotox Res 2018; 34:442-451. [DOI: 10.1007/s12640-018-9902-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
17
|
Bunford N, Andics A, Kis A, Miklósi Á, Gácsi M. Canis familiaris As a Model for Non-Invasive Comparative Neuroscience. Trends Neurosci 2017; 40:438-452. [PMID: 28571614 DOI: 10.1016/j.tins.2017.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
There is an ongoing need to improve animal models for investigating human behavior and its biological underpinnings. The domestic dog (Canis familiaris) is a promising model in cognitive neuroscience. However, before it can contribute to advances in this field in a comparative, reliable, and valid manner, several methodological issues warrant attention. We review recent non-invasive canine neuroscience studies, primarily focusing on (i) variability among dogs and between dogs and humans in cranial characteristics, and (ii) generalizability across dog and dog-human studies. We argue not for methodological uniformity but for functional comparability between methods, experimental designs, and neural responses. We conclude that the dog may become an innovative and unique model in comparative neuroscience, complementing more traditional models.
Collapse
Affiliation(s)
- Nóra Bunford
- Eötvös Loránd University (ELTE), Institute of Biology, Department of Ethology, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| | - Attila Andics
- Eötvös Loránd University (ELTE), Institute of Biology, Department of Ethology, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Hungarian Academy of Sciences, MTA-ELTE Comparative Ethology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Anna Kis
- Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Ádám Miklósi
- Eötvös Loránd University (ELTE), Institute of Biology, Department of Ethology, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Hungarian Academy of Sciences, MTA-ELTE Comparative Ethology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Márta Gácsi
- Eötvös Loránd University (ELTE), Institute of Biology, Department of Ethology, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Hungarian Academy of Sciences, MTA-ELTE Comparative Ethology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| |
Collapse
|
18
|
Mahmoudzadeh M, Dehaene-Lambertz G, Wallois F. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables. PLoS One 2017; 12:e0173801. [PMID: 28291832 PMCID: PMC5349673 DOI: 10.1371/journal.pone.0173801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/24/2017] [Indexed: 11/19/2022] Open
Abstract
Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.
Collapse
Affiliation(s)
- Mahdi Mahmoudzadeh
- INSERM U1105, GRAMFC, Université de Picardie Jules Verne, CHU SUD Amiens, Amiens, France
- * E-mail:
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, Gif/Yvette, France
| | - Fabrice Wallois
- INSERM U1105, GRAMFC, Université de Picardie Jules Verne, CHU SUD Amiens, Amiens, France
| |
Collapse
|
19
|
Using music to study the evolution of cognitive mechanisms relevant to language. Psychon Bull Rev 2016; 24:177-180. [DOI: 10.3758/s13423-016-1088-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Harms L, Michie PT, Näätänen R. Criteria for determining whether mismatch responses exist in animal models: Focus on rodents. Biol Psychol 2016. [DOI: 10.1016/j.biopsycho.2015.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Development of a non-invasive polysomnography technique for dogs (Canis familiaris). Physiol Behav 2014; 130:149-56. [PMID: 24726397 DOI: 10.1016/j.physbeh.2014.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/03/2014] [Accepted: 04/02/2014] [Indexed: 11/22/2022]
Abstract
Recently dogs (Canis familiaris) have been demonstrated to be a promising model species for studying human behavior as they have adapted to the human niche and developed human-like socio-cognitive skills. Research on dog behavior, however, has so far almost exclusively focused on awake functioning. Here we present a self-developed non-invasive canine polysomnography method that can easily be applied to naive pet dogs. N=22 adult pet dogs (with their owners present) and N=12 adult humans participated in Study I. From these subjects, N=7 dogs returned on two more occasions for Study II. In Study I, we give a descriptive analysis of the sleep electroencephalogram of the dog and compare it to human data. In order to validate our canine polysomnography method in Study II, we compare the sleep macrostructure and the EEG spectrum of dogs after a behaviorally active day without sleep versus passive day with sleep. In Study I, we found that dogs' sleep EEG resembled that of human subjects and was generally in accordance with previous literature using invasive technology. In Study II, we show that similarly to previous results on humans daytime load of novel experiences and sleep deprivation affects the macrostructural and spectral aspects of subsequent sleep. Our results validate the family dog as a model species for studying the effects of pre-sleep activities on the EEG pattern under natural conditions and, thus, broaden the perspectives of the rapidly growing fields of canine cognition and sleep research.
Collapse
|
22
|
Jia H, Pustovyy OM, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Barrett J, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G. Functional MRI of the olfactory system in conscious dogs. PLoS One 2014; 9:e86362. [PMID: 24466054 PMCID: PMC3900535 DOI: 10.1371/journal.pone.0086362] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/07/2013] [Indexed: 11/19/2022] Open
Abstract
We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology.
Collapse
Affiliation(s)
- Hao Jia
- MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| | - Oleg M. Pustovyy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Paul Waggoner
- Canine Detection Research Institute, Auburn University, Auburn, Alabama, United States of America
| | - Ronald J. Beyers
- MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| | - John Schumacher
- Department of Clinical Sciences, Auburn University, Auburn, Alabama, United States of America
| | | | - Jay Barrett
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Edward Morrison
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Nouha Salibi
- MR R&D, Siemens Healthcare, Malvern, Pennsylvania, United States of America
| | - Thomas S. Denney
- MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, Alabama, United States of America
- Department of Psychology, Auburn University, Auburn, Alabama, United States of America
| | - Vitaly J. Vodyanoy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama, United States of America
| | - Gopikrishna Deshpande
- MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, Alabama, United States of America
- Department of Psychology, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
23
|
Kujala MV, Törnqvist H, Somppi S, Hänninen L, Krause CM, Vainio O, Kujala J. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography. PLoS One 2013; 8:e61818. [PMID: 23650504 PMCID: PMC3641087 DOI: 10.1371/journal.pone.0061818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris) while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz) suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.
Collapse
Affiliation(s)
- Miiamaaria V Kujala
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Bron, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Törnqvist H, Kujala MV, Somppi S, Hänninen L, Pastell M, Krause CM, Kujala J, Vainio O. Visual event-related potentials of dogs: a non-invasive electroencephalography study. Anim Cogn 2013; 16:973-82. [PMID: 23572066 DOI: 10.1007/s10071-013-0630-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
Previously, social and cognitive abilities of dogs have been studied within behavioral experiments, but the neural processing underlying the cognitive events remains to be clarified. Here, we employed completely non-invasive scalp-electroencephalography in studying the neural correlates of the visual cognition of dogs. We measured visual event-related potentials (ERPs) of eight dogs while they observed images of dog and human faces presented on a computer screen. The dogs were trained to lie still with positive operant conditioning, and they were neither mechanically restrained nor sedated during the measurements. The ERPs corresponding to early visual processing of dogs were detectable at 75-100 ms from the stimulus onset in individual dogs, and the group-level data of the 8 dogs differed significantly from zero bilaterally at around 75 ms at the most posterior sensors. Additionally, we detected differences between the responses to human and dog faces in the posterior sensors at 75-100 ms and in the anterior sensors at 350-400 ms. To our knowledge, this is the first illustration of completely non-invasively measured visual brain responses both in individual dogs and within a group-level study, using ecologically valid visual stimuli. The results of the present study validate the feasibility of non-invasive ERP measurements in studies with dogs, and the study is expected to pave the way for further neurocognitive studies in dogs.
Collapse
Affiliation(s)
- Heini Törnqvist
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bensky MK, Gosling SD, Sinn DL. The World from a Dog’s Point of View. ADVANCES IN THE STUDY OF BEHAVIOR 2013. [DOI: 10.1016/b978-0-12-407186-5.00005-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|