1
|
Edelhoff H, Milleret C, Ebert C, Dupont P, Kudernatsch T, Zollner A, Bischof R, Peters W. Sexual segregation results in pronounced sex-specific density gradients in the mountain ungulate, Rupicapra rupicapra. Commun Biol 2023; 6:979. [PMID: 37749272 PMCID: PMC10520025 DOI: 10.1038/s42003-023-05313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Sex-specific differences in habitat selection and space use are common in ungulates. Yet, it is largely unknown how this behavioral dimorphism, ultimately leading to sexual segregation, translates to population-level patterns and density gradients across landscapes. Alpine chamois (Rupicapra rupicapra r.) predominantly occupy habitat above tree line, yet especially males may also take advantage of forested habitats. To estimate male and female chamois density and determinants thereof, we applied Bayesian spatial capture-recapture (SCR) models in two contrasting study areas in the Alps, Germany, during autumn. We fitted SCR models to non-invasive individual encounter data derived from genotyped feces. Sex-specific densities were modeled as a function of terrain ruggedness, forest canopy cover, proportion of barren ground, and site severity. We detected pronounced differences in male and female density patterns, driven primarily by terrain ruggedness, rather than by sex-specific effects of canopy cover. The positive effect of ruggedness on density was weaker for males which translated into a higher proportion of males occupying less variable terrain, frequently located in forests, compared to females. By estimating sex-specific variation in both detection probabilities and density, we were able to quantify and map how individual behavioral differences scale up and shape spatial patterns in population density.
Collapse
Affiliation(s)
- Hendrik Edelhoff
- Wildlife Biology and Management Research Unit, Bavarian State Institute of Forestry, Freising, Germany.
| | - Cyril Milleret
- Faculty of Environmental Management and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Cornelia Ebert
- Seq-IT GmbH & Co.KG, Department Wildlife Genetics, Kaiserslautern, Germany
| | - Pierre Dupont
- Faculty of Environmental Management and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Thomas Kudernatsch
- Department of Conservation and Biodiversity, Bavarian State Institute of Forestry, Freising, Germany
| | - Alois Zollner
- Department of Conservation and Biodiversity, Bavarian State Institute of Forestry, Freising, Germany
| | - Richard Bischof
- Faculty of Environmental Management and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Wibke Peters
- Wildlife Biology and Management Research Unit, Bavarian State Institute of Forestry, Freising, Germany
- Wildlife Biology and Management Unit, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Orgeret F, Reisinger RR, Carpenter-Kling T, Keys DZ, Corbeau A, Bost CA, Weimerskirch H, Pistorius PA. Spatial segregation in a sexually dimorphic central place forager: Competitive exclusion or niche divergence? J Anim Ecol 2021; 90:2404-2420. [PMID: 34091891 DOI: 10.1111/1365-2656.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/29/2021] [Indexed: 12/11/2022]
Abstract
Sexual competition is increasingly recognized as an important selective pressure driving species distributions. However, few studies have investigated the relative importance of interpopulation versus intrapopulation competition in relation to habitat availability and selection. To explain spatial segregation between sexes that often occurs in non-territorial and central place foragers, such as seabirds, two hypotheses are commonly used. The 'competitive exclusion' hypothesis states that dominant individuals should exclude subordinate individuals through direct competition, whereas the 'niche divergence' hypothesis states that segregation occurs due to past competition and habitat specialization. We tested these hypotheses in two populations of an extreme wide-ranging and sexually dimorphic seabird, investigating the relative role of intrapopulation and interpopulation competition in influencing sex-specific distribution and habitat preferences. Using GPS loggers, we tracked 192 wandering albatrosses Diomedea exulans during four consecutive years (2016-2019), from two neighbouring populations in the Southern Ocean (Prince Edward and Crozet archipelagos). We simulated pseudo-tracks to create a null spatial distribution and used Kernel Density Estimates (KDE) and Resource Selection Functions (RSF) to distinguish the relative importance of within- versus between-population competition. Kernel Density Estimates showed that only intrapopulation sexual segregation was significant for each monitoring year, and that tracks between the two colonies resulted in greater overlap than expected from the null distribution, especially for the females. RSF confirmed these results and highlighted key at-sea foraging areas, even if the estimated of at-sea densities were extremely low. These differences in selected areas between sites and sexes were, however, associated with high interannual variability in habitat preferences, with no clear specific preferences per site and sex. Our results suggest that even with low at-sea population densities, historic intrapopulation competition in wide-ranging seabirds may have led to sexual dimorphism and niche specialization, favouring the 'niche divergence' hypothesis. In this study, we provide a protocol to study competition within as well as between populations of central place foragers. This is relevant for understanding their distribution patterns and population regulation, which could potentially improve management of threatened populations.
Collapse
Affiliation(s)
- Florian Orgeret
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Ryan R Reisinger
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Tegan Carpenter-Kling
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa.,DST-NRF Centre of Excellence at the FitzPatrick, Institute of African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Danielle Z Keys
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Alexandre Corbeau
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, Villiers-en-Bois, France
| | - Pierre A Pistorius
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa.,DST-NRF Centre of Excellence at the FitzPatrick, Institute of African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|