1
|
Ham JR, Szabo M, Annor-Bediako J, Stark RA, Iwaniuk AN, Pellis SM. Quality not quantity: Deficient juvenile play experiences lead to altered medial prefrontal cortex neurons and sociocognitive skill deficits. Dev Psychobiol 2024; 66:e22456. [PMID: 38388195 DOI: 10.1002/dev.22456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024]
Abstract
Reduced play experience over the juvenile period leads to adults with impoverished social skills and to anatomical and physiological aberrations of the neurons found in the medial prefrontal cortex (mPFC). Even rearing rats from high-playing strains with low-playing strains show these developmental consequences. In the present study, we evaluated whether low-playing rats benefit from being reared with higher playing peers. To test this, we reared male Fischer 344 rats (F344), typically thought to be a low-playing strain, with a Long-Evans (LE) peer, a relatively high-playing strain. As juveniles, F344 rats reared with LE rats experienced less play and lower quality play compared to those reared with another F344. As adults, the F344 rats reared with LE partners exhibited poorer social skills and the pyramidal neurons of their mPFC had larger dendritic arbors than F344 rats reared with same-strain peers. These findings show that being reared with a more playful partner does not improve developmental outcomes of F344 rats, rather the discordance in the play styles of F344 and LE rats leads to poorer outcomes.
Collapse
Affiliation(s)
- Jackson R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Madeline Szabo
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Rachel A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sergio M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Gohar T, Ciacciarelli EJ, Dunn SD, West EA. Transient strain differences in an operant delayed non-match to position task. Behav Processes 2023; 211:104932. [PMID: 37604215 PMCID: PMC10493892 DOI: 10.1016/j.beproc.2023.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Working memory refers to the temporary retention of a small amount of information used in the execution of a cognitive task. Working memory impairments are one of the common hallmarks of many neuropsychiatric and neurological disorders including schizophrenia and Alzheimer's disease. Here, we investigated Fischer 344 and Long-Evans rats for strain and sex differences in working memory using the operant-based DNMTP task. Rats were required to press one of two levers presented during a sample phase and followed by a 2-32 second delay, the rats were then required to press the opposite, nonmatch, lever during the choice phase. We found a transient strain difference with Fischer 344 rats performing better than Long-Evans early in training. The Fischer 344 strain showed stable performance across sessions while the performance of Long-Evans increased in the later sessions. Since different background rat strains are used for transgenic rat models, it is critical to be able to compare the behavioral performance across different strains. These findings have implications in behavioral neuroscience research as understanding the typical behavioral endpoints in different background strains will aid our understanding of how different models affect behavioral performance.
Collapse
Affiliation(s)
- Taqdees Gohar
- MARC Program, Rutgers University-Camden, Camden, NJ 08102, USA; Cell Biology and Neuroscience, USA
| | | | | | - Elizabeth A West
- Cell Biology and Neuroscience, USA; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
3
|
Kiyokawa Y, Tamogami S, Ootaki M, Kahl E, Mayer D, Fendt M, Nagaoka S, Tanikawa T, Takeuchi Y. An appeasing pheromone ameliorates fear responses in the brown rat ( Rattus norvegicus). iScience 2023; 26:107081. [PMID: 37426349 PMCID: PMC10329171 DOI: 10.1016/j.isci.2023.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The brown rat (Rattus norvegicus) is one of the major animals both in the laboratory and in urban centers. Brown rats communicate various types of information using pheromones, the chemicals that mediate intra-species communication in minute amounts. Therefore, analyses of pheromones would further our understanding of the mode of life of rats. We show that a minute amount of 2-methylbutyric acid (2-MB) released from the neck region can ameliorate fear responses both in laboratory rats and in wild brown rats. Based on these findings, we conclude that 2-MB is an appeasing pheromone in the brown rat. A better understanding of rats themselves would allow us to perform more effective ecologically based research on social skills and pest management campaigns with low animal welfare impacts, which might contribute to furthering the advancement of science and improving public health.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeyuki Tamogami
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Satoru Nagaoka
- Daimaru Compound Chemical Co., Ltd, Nagano 381-1222, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co., Ltd, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Lu MH, Uematsu A, Kiyokawa Y, Emoto K, Takeuchi Y. Glutamatergic Projections from the Posterior Complex of the Anterior Olfactory Nucleus to the Amygdala Complexes. Neuroscience 2023; 521:102-109. [PMID: 37142179 DOI: 10.1016/j.neuroscience.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Social buffering is a phenomenon where stress responses are ameliorated by an affiliative conspecific. Our previous findings suggest that the posterior complex of the anterior olfactory nucleus (AOP) is well positioned to participate in the neural mechanisms underlying social buffering. However, the lack of anatomical information prevents us from further estimating the role of the AOP. Here, we obtained anatomical information regarding the AOP in male rats. In Experiment 1 (n = 5), among 4',6-diamidino-2-phenylindole-positive cells in the AOP, the proportion of glutamic acid decarboxylase 67 (GAD67)-positive cells was 13.8% ± 1.2%. In Experiment 2 (n = 5), among the cells that were labeled by a retrograde tracer injected into the basolateral complex of the amygdala (BLA), the proportion of GAD67-positive cells was 18.6% ± 0.8%. In Experiment 3 (n = 5), we demonstrated the existence of cells that were labeled by the retrograde tracer injected into the posterior part of the medial amygdala (MeP), mostly into the ventral part of the MeP. In addition, the proportion of GAD67-positive cells among the tracer-labeled cells was 21.7% ± 1.7%. In Experiment 4 (n = 3), the retrograde tracers were injected into the BLA and MeP, mostly into the ventral part of the MeP. The proportion of double-labeled cells among the tracer-labeled cells was 2.1% ± 1.2%. Taken together, these results suggest that the AOP is predominantly composed of glutamatergic neurons. In addition, the AOP sends mutually independent glutamatergic-predominant projections to the BLA and MeP.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan
| | - Akira Uematsu
- International Research Center for Neurointelligence, The University of Tokyo, Japan; Graduate School of Science, The University of Tokyo, Japan; Present Adress: Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan.
| | - Kazuo Emoto
- International Research Center for Neurointelligence, The University of Tokyo, Japan; Graduate School of Science, The University of Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan
| |
Collapse
|
5
|
Kiyokawa Y, Kuroda N, Takeuchi Y. The strain of unfamiliar conspecifics affects stress identification in rats. Behav Processes 2022; 201:104714. [PMID: 35901937 DOI: 10.1016/j.beproc.2022.104714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Humans show distinct social behaviours when we evaluate an individual as being a member of the same group and recognize social similarity to the individual. One example is more accurate identification of emotion in that individual. Our previous studies proposed that rats recognize social similarity to certain strains of unfamiliar rats. It is therefore possible that the strain of unfamiliar conspecifics affects stress identification in rats. Wistar subject rats were allowed to explore a pair of unfamiliar Wistar, Sprague-Dawley (SD), Long-Evans (LE), or Fischer344 (F344) stimulus rats. To induce differences in stress, one of the stimulus rats had received foot shocks immediately before the test. It was found that the subjects showed biased interaction towards the shocked Wistar and SD stimulus rats, but not toward the shocked LE or F344 stimulus rats. Subsequent experiments confirmed that the biased interaction towards the shocked Wistar and SD stimulus rats was driven by stress in these stimulus rats. In addition, the lack of biased interaction towards the shocked LE and F344 stimulus rats did not appear to be due to procedural reasons. The experiment using LE subject rats further confirmed that the shocked LE stimulus rats emitted distress signals. These results suggested that Wistar rats could identify stress in unfamiliar Wistar and SD rats, but not in unfamiliar LE or F344 rats. Therefore, rats appear to recognize social similarity to certain unfamiliar strains of rats.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Naoko Kuroda
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Zhang X, Kiyokawa Y, Takeuchi Y. Mapping of c-Fos expression in the medial amygdala following social buffering in male rats. Behav Brain Res 2022; 422:113746. [PMID: 35033609 DOI: 10.1016/j.bbr.2022.113746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Social buffering is the phenomenon in which an affiliative conspecific (associate) ameliorates stress responses of a subject. We previously found that social buffering in Wistar subject rats is induced if the strain of the associate is Wistar or a strain derived from Wistar rats. In the present study, we assessed the possible role of medial amygdala (Me) in this strain-dependent induction of social buffering. The subjects were exposed to the conditioned stimulus (CS) that had been paired or unpaired with a foot shock either alone, with an unfamiliar Wistar associate, or with an unfamiliar Fischer 344 (F344) associate. We found that the Wistar associates, but not F344 associates, ameliorated increased freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala caused by the CS. In addition, Fos expression in the posterior complex of the anterior olfactory nucleus and lateral intercalated cell mass of the amygdala was increased simultaneously. These results suggest that Wistar associates, but not F344 associates, induced social buffering. In the Me, we did not find any differences associated with stress responses or amelioration of stress responses. In contrast, a comparison among the unpaired subjects found that the Wistar associates, but not F344 associates, increased exploratory behavior and Fos expression in the posteroventral subdivision of the Me (MePV). Based on these results, we propose that the MePV is involved in the recognition of social similarity with the associates. Taken together, the present study provides information about the possible role of Me in social buffering.
Collapse
Affiliation(s)
- Xinrui Zhang
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|