1
|
Teppan J, Schwanzer J, Rittchen S, Bärnthaler T, Lindemann J, Nayak B, Reiter B, Luschnig P, Farzi A, Heinemann A, Sturm E. The disrupted molecular circadian clock of monocytes and macrophages in allergic inflammation. Front Immunol 2024; 15:1408772. [PMID: 38863703 PMCID: PMC11165079 DOI: 10.3389/fimmu.2024.1408772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Macrophage dysfunction is a common feature of inflammatory disorders such as asthma, which is characterized by a strong circadian rhythm. Methods and results We monitored the protein expression pattern of the molecular circadian clock in human peripheral blood monocytes from healthy, allergic, and asthmatic donors during a whole day. Monocytes cultured of these donors allowed us to examine circadian protein expression in human monocyte-derived macrophages, M1- and M2- polarized macrophages. In monocytes, particularly from allergic asthmatics, the oscillating expression of circadian proteins CLOCK, BMAL, REV ERBs, and RORs was significantly altered. Similar changes in BMAL1 were observed in polarized macrophages from allergic donors and in tissue-resident macrophages from activated precision cut lung slices. We confirmed clock modulating, anti-inflammatory, and lung-protective properties of the inverse ROR agonist SR1001 by reduced secretion of macrophage inflammatory protein and increase in phagocytosis. Using a house dust mite model, we verified the therapeutic effect of SR1001 in vivo. Discussion Overall, our data suggest an interaction between the molecular circadian clock and monocytes/macrophages effector function in inflammatory lung diseases. The use of SR1001 leads to inflammatory resolution in vitro and in vivo and represents a promising clock-based therapeutic approach for chronic pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Julia Teppan
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Juliana Schwanzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Jörg Lindemann
- Department of Surgery, Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Barsha Nayak
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Bernhard Reiter
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Sun J, Liu F, Yu W, Fu D, Jiang Q, Mo F, Wang X, Shi T, Wang F, Pang D, Liu X. Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew Chem Int Ed Engl 2021; 60:24275-24283. [PMID: 34476884 PMCID: PMC8652846 DOI: 10.1002/anie.202111093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The direct visualization of vaccine fate is important to investigate its immunoactivation process to elucidate the detailed molecular reaction process at single-molecular level. Yet, visualization of the spatiotemporal trafficking of vaccines remains poorly explored. Here, we show that quantum dot (QD) nanomaterials allow for monitoring vaccine dynamics and for amplified immune response. Synthetic QDs enable efficient conjugation of antigen and adjuvants to target tissues and cells, and non-invasive imaging the trafficking dynamics to lymph nodes and cellular compartments. The nanoparticle vaccine elicits potent immune responses and anti-tumor efficacy alone or in combination with programmed cell death protein 1 blockade. The synthetic QDs showed high fluorescence quantum yield and superior photostability, and the reliable and long-term spatiotemporal tracking of vaccine dynamics was realized for the first time by using the synthetic QDs, providing a powerful strategy for studying immune response and evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Junlin Sun
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Feng Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Wenqian Yu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Dandan Fu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Fengye Mo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionFrontiers Science Center for New Organic MatterResearch Center for Analytical SciencesCollege of ChemistryFrontiers Science Center for Cell ResponsesNankai UniversityTianjin300071P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
3
|
Sun J, Liu F, Yu W, Fu D, Jiang Q, Mo F, Wang X, Shi T, Wang F, Pang D, Liu X. Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junlin Sun
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Feng Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Wenqian Yu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Dandan Fu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Biosensing and Molecular Recognition Frontiers Science Center for New Organic Matter Research Center for Analytical Sciences College of Chemistry Frontiers Science Center for Cell Responses Nankai University Tianjin 300071 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
4
|
Integrative multiomics analysis of Premolis semirufa caterpillar venom in the search for molecules leading to a joint disease. Sci Rep 2021; 11:1995. [PMID: 33479267 PMCID: PMC7820220 DOI: 10.1038/s41598-020-79769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
The joint disease called pararamosis is an occupational disease caused by accidental contact with bristles of the caterpillar Premolis semirufa. The chronic inflammatory process narrows the joint space and causes alterations in bone structure and cartilage degeneration, leading to joint stiffness. Aiming to determine the bristle components that could be responsible for this peculiar envenomation, in this work we have examined the toxin composition of the caterpillar bristles extract and compared it with the differentially expressed genes (DEGs) in synovial biopsies of patients affected with rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteins identified, 129 presented an average of 63% homology with human proteins and shared important conserved domains. Among the human homologous proteins, we identified seven DEGs upregulated in synovial biopsies from RA or OA patients using meta-analysis. This approach allowed us to suggest possible toxins from the pararama bristles that could be responsible for starting the joint disease observed in pararamosis. Moreover, the study of pararamosis, in turn, may lead to the discovery of specific pharmacological targets related to the early stages of articular diseases.
Collapse
|
5
|
Jeremiasse B, Matta C, Fellows CR, Boocock DJ, Smith JR, Liddell S, Lafeber F, van Spil WE, Mobasheri A. Alterations in the chondrocyte surfaceome in response to pro-inflammatory cytokines. BMC Mol Cell Biol 2020; 21:47. [PMID: 32586320 PMCID: PMC7318434 DOI: 10.1186/s12860-020-00288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chondrocytes are exposed to an inflammatory micro-environment in the extracellular matrix (ECM) of articular cartilage in joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). In OA, degenerative changes and low-grade inflammation within the joint transform the behaviour and metabolism of chondrocytes, disturb the balance between ECM synthesis and degradation, and alter the osmolality and ionic composition of the micro-environment. We hypothesize that chondrocytes adjust their physiology to the inflammatory microenvironment by modulating the expression of cell surface proteins, collectively referred to as the ‘surfaceome’. Therefore, the aim of this study was to characterize the surfaceome of primary equine chondrocytes isolated from healthy joints following exposure to the pro-inflammatory cytokines interleukin-1-beta (IL-1β) and tumour necrosis factor-alpha (TNF-α). We employed combined methodology that we recently developed for investigating the surfaceome in stem cells. Membrane proteins were isolated using an aminooxy-biotinylation technique and analysed by mass spectrometry using high throughput shotgun proteomics. Selected proteins were validated by western blotting. Results Amongst the 431 unique cell surface proteins identified, a high percentage of low-abundance proteins, such as ion channels, receptors and transporter molecules were detected. Data are available via ProteomeXchange with identifier PXD014773. A high number of proteins exhibited different expression patterns following chondrocyte stimulation with pro-inflammatory cytokines. Low density lipoprotein related protein 1 (LPR-1), thrombospondin-1 (TSP-1), voltage dependent anion channel (VDAC) 1–2 and annexin A1 were considered to be of special interest and were analysed further by western blotting. Conclusions Our results provide, for the first time, a repository for proteomic data on differentially expressed low-abundance membrane proteins on the surface of chondrocytes in response to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Bernadette Jeremiasse
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Christopher R Fellows
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Science and Medicine, University of Surrey, Guildford, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | | - Floris Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Willem E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ali Mobasheri
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. .,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Queen's Medical Centre, Nottingham, UK. .,Department of Orthopedics, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Li C, Ban M, Bai F, Chen J, Jin X, Song Y. Anti-Nociceptive and Anti-Inflammation Effect Mechanisms of Mutants of Syb-prII, a Recombinant Neurotoxic Polypeptide. Toxins (Basel) 2019; 11:E699. [PMID: 31805689 PMCID: PMC6949983 DOI: 10.3390/toxins11120699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Syb-prII, a recombinant neurotoxic polypeptide, has analgesic effects with medicinal value. Previous experiments indicated that Syb-prII displayed strong analgesic activities. Therefore, a series of in vivo and vitro experiments were designed to investigate the analgesic and anti-inflammatory properties and possible mechanisms of Syb-prII. The results showed that administered Syb-prII-1 and Syb-prII-2 (0.5, 1, 2.0 mg/kg, i.v.) to mice significantly reduced the time of licking, biting, or flicking of paws in two phases in formalin-induced inflammatory nociception. Syb-prII-1 inhibited xylene-induced auricular swelling in a dose-dependent manner. The inhibitory effect of 2.0 mg/kg Syb-prII-1 on the ear swelling model was comparable to that of 200 mg/kg aspirin. In addition, the ELISA and Western blot analysis suggested that Syb-prII-1 and Syb-prII-2 may exert an analgesic effect by inhibiting the expression of Nav1.8 and the phosphorylation of ERK, JNK, and P38. Syb-prII-1 markedly suppressed the expression of IL-1β, IL-6, and TNF-α of mice in formalin-induced inflammatory nociception. We used the patch-clamp technique and investigated the effect of Syb-prII-1 on TTX-resistant sodium channel currents in acutely isolated rat DRG neurons. The results showed that Syb-prII-1 can significantly down regulate TTX-resistant sodium channel currents. In conclusion, Syb-prII mutants may alleviate inflammatory pain by significantly inhibiting the expression of Nav1.8, mediated by the phosphorylation of MAPKs and significant inhibition of TTX-resistant sodium channel currents.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongbo Song
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.L.); (M.B.); (F.B.); (J.C.); (X.J.)
| |
Collapse
|
7
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
8
|
Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci Rep 2018; 8:14305. [PMID: 30250232 PMCID: PMC6155189 DOI: 10.1038/s41598-018-32675-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
Human intestinal microbes can mediate development of arthritis – Studies indicate that certain bacterial nucleic acids may exist in synovial fluid (SF) and could be involved in arthritis, although the underlying mechanism remains unclear. To characterize potential SF bacterial nucleic acids, we used 16S rRNA gene amplicon sequencing to assess bacterial nucleic acid communities in 15 synovial tissue (ST) and 110 SF samples from 125 patients with rheumatoid arthritis (RA) and 16 ST and 42 SF samples from 58 patients with osteoarthritis (OA). Our results showed an abundant diversity of bacterial nucleic acids in these clinical samples, including presence of Porphyromonas and Bacteroides in all 183 samples. Agrobacterium, Comamonas, Kocuria, Meiothermus, and Rhodoplanes were more abundant in synovial tissues of rheumatoid arthritis (STRA). Atopobium, Phascolarctobacterium, Rhodotorula mucilaginosa, Bacteroides uniformis, Rothia, Megasphaera, Turicibacter, Leptotrichia, Haemophilus parainfluenzae, Bacteroides fragilis, Porphyromonas, and Streptococcus were more abundant in synovial tissues of osteoarthritis (STOA). Veillonella dispar, Haemophilus parainfluenzae, Prevotella copri and Treponema amylovorum were more abundant in synovial fluid of rheumatoid arthritis (SFRA), while Bacteroides caccae was more abundant in the synovial fluid of osteoarthritis (SFOA). Overall, this study confirms existence of bacterial nucleic acids in SF and ST samples of RA and OA lesions and reveals potential correlations with degree of disease.
Collapse
|
9
|
Kim JR, Yoo JJ, Kim HA. Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. Int J Mol Sci 2018; 19:ijms19030674. [PMID: 29495538 PMCID: PMC5877535 DOI: 10.3390/ijms19030674] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in older people and is characterized by the progressive destruction of articular cartilage, synovial inflammation, changes in subchondral bone and peri-articular muscle, and pain. Because our understanding of the aetiopathogenesis of OA remains incomplete, we haven’t discovered a cure for OA yet. This review appraises novel therapeutics based on recent progress in our understanding of the molecular pathogenesis of OA, including pro-inflammatory and pro-catabolic mediators and the relevant signalling mechanisms. The changes in subchondral bone and peri-articular muscle accompanying cartilage damage are also reviewed.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| | - Jong Jin Yoo
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea.
| | - Hyun Ah Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| |
Collapse
|
10
|
Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med 2017; 12:e237-e249. [PMID: 28079986 DOI: 10.1002/term.2399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri-culture of synovial fibroblasts (SFs), LPS-stimulated macrophages and a primary chondrocyte-based tissue-engineered construct was established. The tissue-engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue-degrading enzymes (MMP-1, -3, -13 and ADAMTS-4, -5), and upregulation of inflammatory mediator gene expression (TNF-α, IL-1β, IL-6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti-rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Li Ting Leom
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Pei Fen Patricia Low
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dong-An Wang
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Dayer JM, Oliviero F, Punzi L. A Brief History of IL-1 and IL-1 Ra in Rheumatology. Front Pharmacol 2017; 8:293. [PMID: 28588495 PMCID: PMC5440542 DOI: 10.3389/fphar.2017.00293] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
The history of what, in 1979, was called interleukin-1 (IL-1), orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP) (1974) and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE2 in human synovial cells by a mononuclear cell factor (MCF) (1977). Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra) in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as "inflammasome" have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still's disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet's disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.
Collapse
Affiliation(s)
| | | | - Leonardo Punzi
- Department of Medicine, University of PadovaPadova, Italy
| |
Collapse
|
12
|
Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev 2017; 31:306-317. [PMID: 28495184 DOI: 10.1016/j.blre.2017.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a pleiotropic cytokine that exerts multiple roles in both physiological and pathological conditions. It is produced by different cell subsets, and drives a wide range of inflammatory responses in numerous target cells. Enhanced IL-1β signaling is a common event in patients of hematological malignancies. Recent body of evidence obtained in preclinical models shows the pathogenic role of these alterations, and the promising therapeutic value of IL-1 targeting. In this review, we further highlight a potential contribution of IL-1β linking to complications and autoimmune disease that should be investigated in future studies. Hence, drugs that target IL-1 may be helpful to improve outcome or reduce morbidity in patients. Some of them are FDA-approved, and used efficiently against autoimmune diseases, like IL-1 receptor antagonist. In the clinic, however, this agent seems to have limited properties. Current improved drugs will allow to determine the true potential of IL-1 and IL-1β targeting as therapy in hematological malignancies and their related complications.
Collapse
|
13
|
Jandl K, Stacher E, Bálint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, Dahlen SE, Wheelock CE, Kratky D, Olschewski A, Marsche G, Schuligoi R, Heinemann A. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol 2016; 137:833-43. [PMID: 26792210 PMCID: PMC4954606 DOI: 10.1016/j.jaci.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Abstract
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.
Collapse
Affiliation(s)
- Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Eva Maria Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Experimental Asthma and Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol 2015; 12:14-24. [DOI: 10.1038/nrrheum.2016.166] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Caso F, Lubrano E, Del Puente A, Caso P, Peluso R, Foglia F, Benigno C, Girolimetto N, Bottiglieri P, Scarpa R, Costa L. Progress in understanding and utilizing TNF-α inhibition for the treatment of psoriatic arthritis. Expert Rev Clin Immunol 2015; 12:315-31. [PMID: 26558483 DOI: 10.1586/1744666x.2016.1117941] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The improved recognition of pathogenetic molecular mechanisms has led to the use of drugs targeting cytokines in different inflammatory arthropathies as well psoriatic arthritis (PsA). In particular, the progress in knowledge on tumor necrosis factor (TNF)-α in the pathogenesis of PsA has changed the therapeutic approach by use of direct and receptor cytokine antagonists. Currently, infliximab (IFX), adalimumab, etanercept, golimumab and certolizumab pegol represent the five anti-TNF-α available for the treatment of PsA. This review describes evidence on treatment aimed at neutralizing TNF-α in PsA patients, from the first study in 2000 until today, mainly derived from randomized clinical trials. In comparison with traditional therapies, anti-TNF-α agents have shown to have more efficacy both in treating clinical aspects, including enthesitis, dactylitis, joint pain and swelling, axial involvement, nail and skin lesions, and in reducing radiographic progression. Moreover, anti-TNF-α agents have been demonstrated to be reasonably safe in PsA, as confirmed by data derived by different registries.
Collapse
Affiliation(s)
- Francesco Caso
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy.,b Rheumatology Unit, Department of Medicine DIMED , University of Padova , Padova , Italy
| | - Ennio Lubrano
- c Department of Medicine and Health Sciences "Vincenzo Tiberio" , University of Molise , Campobasso , Italy
| | - Antonio Del Puente
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Paolo Caso
- d Geriatric Unit, Faculty of Medicine and Psychology , "Sapienza" University of Rome, S. Andrea Hospital , Rome , Italy
| | - Rosario Peluso
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Francesca Foglia
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Carolina Benigno
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Nicolò Girolimetto
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Paolo Bottiglieri
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Raffaele Scarpa
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy
| | - Luisa Costa
- a Rheumatology Unit, Department of Clinical Medicine and Surgery , University Federico II , Naples , Italy.,b Rheumatology Unit, Department of Medicine DIMED , University of Padova , Padova , Italy
| |
Collapse
|
16
|
Mistry JB, Jackson DJ, Bukhari M, Taylor AM. A role for interleukins in ochronosis in a chondrocyte in vitro model of alkaptonuria. Clin Rheumatol 2015; 35:1849-56. [DOI: 10.1007/s10067-015-3091-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/26/2023]
|
17
|
Graversen JH, Moestrup SK. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163. MEMBRANES 2015; 5:228-52. [PMID: 26111002 PMCID: PMC4496642 DOI: 10.3390/membranes5020228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches.
Collapse
Affiliation(s)
- Jonas Heilskov Graversen
- Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 5000-Odense C, Denmark.
| | - Søren Kragh Moestrup
- Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 5000-Odense C, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000-Odense C, Denmark.
| |
Collapse
|
18
|
Barlič A, Žigon S, Blejec A, Kregar Velikonja N. Gene expression of cultured human chondrocytes as a model for assessing neutralization efficacy of soluble TNFα by TNFα antagonists. Biologicals 2015; 43:171-80. [PMID: 25846605 DOI: 10.1016/j.biologicals.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) antagonists are efficacious in the treatment of various immune-mediated inflammatory diseases. Because of rapidly growing demand for developing new or biosimilar versions of these biologicals, the need to create in vitro testing models that best represent physiological conditions is increasing. Primary human chondrocytes were used for potency evaluation and comparison between the molecular effects of anti-TNFα biologicals. Infliximab and etanercept were chosen to assess the suitability of chondrocyte cell culture for determination of anti-TNFα neutralization efficacy employing quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technology. Use of both anti-TNFα biologics resulted in decrease of TNFα-stimulated expression of various matrix metalloproteinases, interleukins and other inflammation-related genes in our cell model. Significant differences in inhibition efficacy of etanercept and infliximab were observed, which were confirmed also on protein level. To evaluate the potency of anti-TNFα biologicals, a selection of TNFα-responsive target genes was made from the gene array data. The selected genes were employed in development of statistical model, which enables comparability of anti-TNFα biologicals. The presented analytical approach is suitable for assessment of the neutralization efficacy of various anti-TNFα biologicals. As such, it can be used for additional comprehensive characterization and comparability of TNF antagonists in preclinical drug testing.
Collapse
Affiliation(s)
- Ariana Barlič
- Educell Ltd., Prevale 9, 1236 Trzin, Slovenia; IN.Medica, Levičnikova 34, 8310 Šentjernej, Slovenia
| | - Sara Žigon
- Educell Ltd., Prevale 9, 1236 Trzin, Slovenia
| | - Andrej Blejec
- National Institute of Biology, Večna pot 101, 1000 Ljubljana, Slovenia
| | - Nevenka Kregar Velikonja
- Educell Ltd., Prevale 9, 1236 Trzin, Slovenia; IN.Medica, Levičnikova 34, 8310 Šentjernej, Slovenia; Faculty of Health Sciences Novo Mesto, Na Loko 2, 8000 Novo Mesto, Slovenia.
| |
Collapse
|
19
|
HONG SUHYUN, JEONG HUIKYUNG, HAN MINHO, PARK CHEOL, CHOI YUNGHYUN. Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages. Mol Med Rep 2014; 10:3241-6. [DOI: 10.3892/mmr.2014.2613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
|
20
|
Hernández-Valle E, Herrera-Ruiz M, Salgado GR, Zamilpa A, Ocampo MLA, Aparicio AJ, Tortoriello J, Jiménez-Ferrer E. Anti-inflammatory effect of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules 2014; 19:15624-37. [PMID: 25268718 PMCID: PMC6271596 DOI: 10.3390/molecules191015624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022] Open
Abstract
In Mexico Agave angustifolia has traditionally been used to treat inflammation. The aim of this study was to measure the anti-inflammatory effect of the extract of A. angustifolia, the isolation and identification of active compounds. From the acetone extract two active fractions were obtained, (AsF13 and AaF16). For the characterization of pharmacological activity, the acute inflammatory model of mouse ear edema induced with TPA was used. The tissue exposed to TPA and treatments were subjected to two analysis, cytokine quantification (IL-1β, IL-6, IL-10 and TNF-α) and histopathological evaluation. The active fraction (AaF16) consisted principally of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranpsyl] sitosterol. In AaF13 fraction was identified β-sitosteryl glucoside (2) and stigmasterol (3). The three treatments tested showed a concentration-dependent anti-inflammatory effect (AaAc Emax = 33.10%, EC50 = 0.126 mg/ear; AaF13 Emax = 54.22%, EC50 = 0.0524 mg/ear; AaF16 Emax = 61.01%, EC50 = 0.050 mg/ear). The application of TPA caused a significant increase on level of IL-1β, IL-6 and TNFα compared with basal condition, which was countered by any of the experimental treatments. Moreover, the experimental treatments induced a significant increase in the levels of IL-4 and IL-10, compared to the level observed when stimulated with TPA. Therefore, the anti-inflammatory effect of Agave angustifolia, is associated with the presence of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl] sitosterol.
Collapse
Affiliation(s)
- Elizabeth Hernández-Valle
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Gabriela Rosas Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros s/n. Col. Volcanes, Cuernavaca, Morelos CP 62350, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Martha Lucia Arenas Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Antonio Jiménez Aparicio
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| |
Collapse
|
21
|
CHOI WOOSUK, JEONG JINWOO, KIM SUNGOK, KIM GIYOUNG, KIM BYUNGWOO, KIM CHEOLMIN, SEO YONGBAE, KIM WOEYEON, LEE SANGYEOL, JO KWONHO, CHOI YOUNGJU, CHOI YUNGHYUN, KIM GUNDO. Anti-inflammatory potential of peat moss extracts in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Mol Med 2014; 34:1101-9. [DOI: 10.3892/ijmm.2014.1881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/17/2014] [Indexed: 11/06/2022] Open
|
22
|
Hayashi M, Kojima T, Funahashi K, Kato D, Matsubara H, Shioura T, Kanayama Y, Hirano Y, Ishiguro N. Effect of total arthroplasty combined with anti-tumor necrosis factor agents in attenuating systemic disease activity in patients with rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0527-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Jayasuriya CT, Goldring MB, Terek R, Chen Q. Matrilin-3 induction of IL-1 receptor antagonist is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression. Arthritis Res Ther 2012; 14:R197. [PMID: 22967398 PMCID: PMC3580507 DOI: 10.1186/ar4033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022] Open
Abstract
Introduction Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. To understand the mechanisms underlying these properties, we determined the effects of MATN3 protein on the expression of several key anabolic and catabolic genes involved in chondrocyte homeostasis, and the dependence of such regulation on the anti-inflammatory cytokine: IL-1 receptor antagonist (IL-1Ra). Methods The effects of recombinant human (rh) MATN3 protein were examined in C28/I2 immortalized human chondrocytes, primary human chondrocytes (PHCs), and primary mouse chondrocytes (PMCs). Messenger RNA levels of IL-1Ra, COL2A1, ACAN, MMP-13, and ADAMTS-4 and -5 were determined using real-time RT-PCR. Knocking down IL-1Ra was achieved by siRNA gene silencing. IL-1Ra protein levels were quantified by ELISA and the Bio-Plex Suspension Array System. COL2A1 protein level was quantified using Western blot analysis. Statistic analysis was done using the two-tailed t-test or one-way ANOVA. Results rhMATN3 protein induced gene expression of IL-1Ra in C28/I2 cells, PHCs, and PMCs in a dose- and time-dependent manner. Treatment of C28/I2 cells and PHCs with MATN3 protein stimulated gene expression of COL2A1 and ACAN. Conversely, mRNA levels of COL2A1 and ACAN were decreased in MATN3 KO mice. MATN3 protein treatment inhibited IL-1β-induced MMP-13, ADAMTS-4 and ADAMTS-5 in C28/I2 cells and PHCs. Knocking down IL-1Ra abolished the MATN3-mediated stimulation of COL2A1 and ACAN and inhibition of ADAMTS-5, but had no effect on MATN3 inhibition of MMP-13 mRNA. Conclusion Our findings point to a novel regulatory role of MATN3 in cartilage homeostasis due to its capacity to induce IL-1Ra, to upregulate gene expression of the major cartilage matrix components, and to downregulate the expression of OA-associated matrix-degrading proteinases in chondrocytes. The chondroprotective properties of endogenous MATN3 depend partly on its induction of IL-1Ra. Our findings raise a possibility to use rhMATN3 protein for anti-inflammatory and chondroprotective therapy.
Collapse
|
24
|
Xian YF, Lin ZX, Xu XY, Su ZR, Chen JN, Lai XP, Ip SP. Effect of Rhizoma Polygonati on 12-O-tetradecanoylphorbol-acetate-induced ear edema in mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:851-856. [PMID: 22710295 DOI: 10.1016/j.jep.2012.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Polygonati is originated from the dried rhizomes of Polygonatum sibircum Red. It has long been used in traditional Chinese medicine for the treatment of inflammatory disorders. AIM OF THE STUDY The present study aims to investigate the anti-inflammatory effect of aqueous extract of Rhizoma Polygonati (ERP) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA). MATERIALS AND METHODS The anti-inflammatory effect was evaluated by measuring the ear thickness and activity of myeloperoxidase (MPO). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. RESULTS The results showed that ERP significantly decreased the ear thickness and MPO activity in mouse model of inflammation induced by TPA. In addition, ERP also remarkably inhibited the protein and mRNA levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6. CONCLUSIONS These results indicate that ERP has potential anti-inflammatory effect on TPA-induced inflammatory in mice, and the anti-inflammatory effect may be mediated, at least in part, by inhibiting the mRNA expression of a panel of inflammatory mediators including iNOS, COX-2, TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 2012; 20:1550-8. [PMID: 22643864 PMCID: PMC3412497 DOI: 10.1038/mt.2012.103] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery.
Collapse
|
26
|
Wang L, Zhang Y, Wang Z, Li S, Min G, Wang L, Chen J, Cheng J, Wu Y. Inhibitory effect of ginsenoside-Rd on carrageenan-induced inflammation in rats. Can J Physiol Pharmacol 2012; 90:229-36. [PMID: 22300288 DOI: 10.1139/y11-127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A previous study reported that ginsenoside-Rd reduced the production of tumor necrosis factor-α by inhibiting nuclear factor-κB in lipopolysaccharide-activated N9 microglia in vitro. The aim of the present study was to confirm the anti-inflammatory effects and mechanisms of ginsenoside-Rd in animal experiments involving acute inflammation. The results indicated that ginsenoside-Rd at doses ranging from 12.5 to 50 mg/kg i.m. significantly inhibited the swelling of hind paws in rats for 1-6 h after the carrageenan injection. The levels of proinflammatory cytokines and proinflammatory mediators were markedly reduced by ginsenoside-Rd. Ginsenoside-Rd, when administered intramuscularly at 12.5, 25, and 50 mg/kg doses, showed signicant inhibition of carrageenan-induced production of interleukin-1β (6.91%, 45.75%, and 55.18%, respectively), tumor necrosis factor-α (37.99%, 56.39%, and 47.38%, respectively), prostaglandin E(2) (22.92%, 30.12%, and 36.36%, respectively), and nitric oxide (28.27%, 44.53%, and 53.42%, respectively). In addition, ginsenoside-Rd (12.5, 25, and 50 mg/kg i.m.) effectively decreased the levels of nuclear factor-κB (6.77%, 20.28%, and 41.03%, respectively) and phosphorylation of IκBα (13.23%, 26.92%, and 41.80%, respectively) in the carrageenan-inflamed paw tissues. These results suggest that ginsenoside-Rd has significant anti-inflammatory effects in vivo, which might be due to its blocking of the nuclear factor-κB signaling pathway. Thus, it may be possible to develop ginsenoside-Rd as a useful agent for inflammatory diseases.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayashi M, Kojima T, Funahashi K, Kato D, Matsubara H, Shioura T, Kanayama Y, Hirano Y, Ishiguro N. Effect of total arthroplasty combined with anti-tumor necrosis factor agents in attenuating systemic disease activity in patients with rheumatoid arthritis. Mod Rheumatol 2011; 22:363-9. [PMID: 21979824 DOI: 10.1007/s10165-011-0527-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022]
Abstract
We assessed the effect of total large-joint arthroplasty combined with anti-tumor necrosis factor (TNF) therapy for rheumatoid arthritis (RA). We studied 45 RA patients (age 57.91 ± 12.74 years, RA duration 13.43 ± 8.28 years) who underwent total arthroplasty (35 knees, 19 hips, 3 elbows, and 1 ankle) between August 2002 and November 2009. All patients received anti-TNF agents (infliximab, 22; etanercept, 33; adalimumab, 3) during the period of the study (that is, they were being treated with the agents when operated on and postoperatively). The disease activity score 28 (DAS28)-erythrocyte sedimentation rate (mean ± standard deviation) in all patients improved significantly from baseline (just before the operation; 4.32 ± 0.99) to 1 year after the operation (3.35 ± 0.93) in contrast with the finding that the mean DAS28-ESR values had remained unchanged from 1 year before the operation to the baseline. Changes in clinical variables in the 58 cases were investigated at baseline, and at 4, 12, and 52 weeks after the operation. The patients were divided by a median split of baseline demographics into 2 groups for further evaluation. Compared with the high-value groups, those with low C-reactive protein and matrix metalloproteinase-3 values showed better results and had lower disease activity. Overall, the DAS28-ESR in both groups had improved 1 year after the operation. In RA patients who are being treated with anti-TNF agents, large-joint arthroplasty may be beneficial, not only for the relief of pain arising from joint destruction, but also for the systemic reduction of RA activity.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Klein-Wieringa IR, Kloppenburg M, Bastiaansen-Jenniskens YM, Yusuf E, Kwekkeboom JC, El-Bannoudi H, Nelissen RGHH, Zuurmond A, Stojanovic-Susulic V, Van Osch GJVM, Toes REM, Ioan-Facsinay A. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann Rheum Dis 2011; 70:851-7. [PMID: 21242232 DOI: 10.1136/ard.2010.140046] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Obesity is a risk factor for the development of osteoarthritis (OA) in hands and knees. Adipose tissue can secrete different adipokines with powerful immunomodulatory effects. The infrapatellar fat pad (IFP) is an intra-articular organ in the vicinity of the synovium and cartilage. It is hypothesised that IFP-derived soluble factors could contribute to pathological processes in the knee joint. A study was therefore undertaken to compare the release of inflammatory mediators in the IFP and subcutaneous adipose tissue (ScAT) and to characterise the adipocytes and immune cell infiltrate in these tissues. METHODS Paired IFP and ScAT samples were obtained from 27 patients with primary OA. The stromal vascular cell fraction (SVF) was isolated and characterised by fluorescence activated cell sorting. Cytokine and adipokine release in fat- and adipocyte-conditioned media was measured by luminex. RESULTS IFP secreted higher levels of inflammatory mediators such as interleukin 6 (IL-6), adipsin, adiponectin and visfatin than ScAT. This could be due to differences in the phenotype of adipocytes and/or in the composition and phenotype of the SVF cells. IFP adipocyte-conditioned media showed a trend towards more IL-6 and adipsin than ScAT. Moreover, the SVF fraction of IFP contained more cells/g tissue, a lower percentage of T cells and a higher percentage of mast cells than ScAT. In addition, T cells had a predominantly pro-inflammatory phenotype while macrophages had a mixed pro- and anti-inflammatory phenotype in the IFP. CONCLUSION There are profound differences in secreted inflammatory factors and immune cell composition between the IFP and ScAT. These data indicate that IFP-derived soluble mediators could contribute to pathophysiological processes in the OA knee joint.
Collapse
Affiliation(s)
- I R Klein-Wieringa
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xian YF, Li YC, Ip SP, Lin ZX, Lai XP, Su ZR. Anti-inflammatory effect of patchouli alcohol isolated from Pogostemonis Herba in LPS-stimulated RAW264.7 macrophages. Exp Ther Med 2011; 2:545-550. [PMID: 22977538 DOI: 10.3892/etm.2011.233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/21/2011] [Indexed: 12/21/2022] Open
Abstract
Pogostemonis Herba has long been used in traditional Chinese medicine for the treatment of inflammation-related disorders. Patchouli alcohol (PA) isolated from Pogostemonis Herba is a tricyclic sesquiterpene that is known to exert a variety of pharmacological activities. The present study aimed to investigate the anti-inflammatory effect of PA on lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Pre-treatment with PA at concentrations of 10, 20 or 40 μM dose-dependently decreased the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, nitric oxide (NO) and prostaglandin E(2) in LPS-stimulated RAW264.7 cells. In addition, PA treatment also reversed the increased mRNA expression of TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 caused by LPS in RAW264.7 cells. These results indicate that PA is an important anti-inflammatory constituent of Pogostemonis Herba and that its anti-inflammatory effect may be mediated, at least in part, by down-regulation of the mRNA expression of a panel of inflammatory mediators, such as TNF-α, IL-1β, IL-6, iNOS and COX-2.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | | | | | | | | | | |
Collapse
|
30
|
Visvanathan S, Wagner C, Rojas J, Kay J, Dasgupta B, Matteson EL, Mack M, Baker DG, Rahman MU. E-selectin, interleukin 18, serum amyloid a, and matrix metalloproteinase 9 are associated with clinical response to golimumab plus methotrexate in patients with active rheumatoid arthritis despite methotrexate therapy. J Rheumatol 2009; 36:1371-9. [PMID: 19487269 DOI: 10.3899/jrheum.080755] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the effect of golimumab (human monoclonal antibody to tumor necrosis factor-alpha) plus methotrexate (MTX) on selected inflammatory biomarkers, and to determine if these effects predict clinical response in rheumatoid arthritis (RA). METHODS Sera from adults with active RA despite MTX therapy, who received subcutaneous injections of placebo + MTX (MTX alone, n = 34) or golimumab 50 or 100 mg every 2 or 4 weeks + MTX (n = 137), were analyzed for levels of C-reactive protein (CRP), serum amyloid A (SAA), interleukin 18 (IL-18), E-selectin, matrix metalloproteinase 9 (MMP-9), and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). RESULTS Golimumab + MTX treatment significantly decreased serum CRP, SAA, IL-18, E-selectin, TIMP-1, and MMP-9 levels (median percent changes of -4.1% to -74.3% across treatment groups) versus MTX alone (-5.8% to 9.7%) when first measured at Week 4; decreases were sustained through Week 16. Larger magnitudes of decrease in all biomarkers were observed for clinical responders versus nonresponders. For golimumab + MTX, regression analyses including all biomarkers and select clinical measures showed that reductions in levels of several markers (SAA, E-selectin, MMP-9) as early as Week 4 correlated significantly with improvement in swollen joint count (SJC) at Week 16, as did reductions in E-selectin with improvement in tender joint count at Week 16. After accounting for the biomarkers, however, treatment group was no longer significant for SJC. CONCLUSION Significant decreases in several inflammatory biomarkers were associated with golimumab + MTX therapy. Decreases in serum levels of SAA, E-selectin, and MMP-9 at Week 4 may be useful in predicting clinical response at Week 16.
Collapse
Affiliation(s)
- Sudha Visvanathan
- Centocor Research and Development, Inc., Malvern, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.
Collapse
Affiliation(s)
- Mary B Goldring
- Research Division, Hospital for Special Surgery, Affiliated with Weill College of Medicine of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
32
|
Shibata Y, Araki H, Oshitani T, Imaoka A, Matsui M, Miyazawa K, Abiko Y. Effects of linear polarized infrared light irradiation on the transcriptional regulation of IL-8 expression in IL-1β-stimulated human rheumatoid synoviocytes involves phosphorylation of the NF-κB RelA subunit. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 94:164-70. [DOI: 10.1016/j.jphotobiol.2008.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/23/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
33
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008; 67 Suppl 3:iii75-82. [PMID: 19022820 PMCID: PMC3939701 DOI: 10.1136/ard.2008.098764] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In osteoarthritis (OA), adult articular chondrocytes undergo phenotypic modulation in response to alterations in the environment owing to mechanical injury and inflammation. These processes not only stimulate the production of enzymes that degrade the cartilage matrix but also inhibit repair. With the use of in vitro and in vivo models, new genes, not known previously to act in cartilage, have been identified and their roles in chondrocyte differentiation during development and in dysregulated chondrocyte function in OA have been examined. These new genes include growth arrest and DNA damage (GADD)45beta and the epithelial-specific ETS (ESE)-1 transcription factor, induced by bone morphogenetic protein (BMP)-2 and inflammatory cytokines, respectively. Both genes are induced by NF-kappaB, suppress COL2A1 and upregulate matrix meatalloproteinase-13 (MMP-13) expression. These genes have also been examined in mouse models of OA, in which discoidin domain receptor 2 is associated with MMP-13-mediated remodelling, in order to understand their roles in physiological cartilage homoeostasis and joint disease.
Collapse
Affiliation(s)
- M B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
34
|
Arend WP, Goldring MB. The development of anticytokine therapeutics for rheumatic diseases. ACTA ACUST UNITED AC 2008; 58:S102-9. [PMID: 18240200 DOI: 10.1002/art.23053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.
Collapse
Affiliation(s)
- Miguel Otero
- Research Division of the Hospital for Special Surgery, Weill College of Medicine of Cornell University, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Zhang L, Li J, Yu SC, Jin Y, Lv XW, Zou YH, Li Y. Therapeutic effects and mechanisms of total flavonoids of Turpinia Arguta Seen on adjuvant arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:167-172. [PMID: 18180120 DOI: 10.1016/j.jep.2007.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/16/2007] [Accepted: 11/15/2007] [Indexed: 05/25/2023]
Abstract
AIM To investigate the therapeutic effects and mechanisms of total flavonoids of Turpinia Arguta Seen (TFS) on adjuvant arthritis in rats. METHODS The model of adjuvant arthritis was induced by injection of Freund's Complete Adjuvant (FCA). Secondary paw swelling of AA rats was measured with volume meter and polyarthritis index were scored. The splenocyte proliferation, (interleukin-1) IL-1 and interleukin-2 (IL-2) production were assayed by cell proliferation assay. Prostaglandin E(2) (PGE(2)) production was determined by radioimmunoassay. RESULTS TFS (80, 160, 320 mg/kg, i.g.) could significantly inhibit secondary inflammatory reaction (secondary swelling, multiple arthritis, pathologic change of ankle arthritis) in AA rats. The results in vivo showed that the low response of splenocytes to concanavalin A (Con A) and lipopolysaccharide (LPS) and the decreased IL-2 synthesis were restored in AA rats treated with TFS (160, 320 mg/kg, i.g.), while the elevated IL-1 and PGE(2) released from peritoneal macrophages (PMphi) were also reduced. CONCLUSION TFS has significant therapeutic effect on AA rats, which might be relate to its immunoregulatory actions.
Collapse
Affiliation(s)
- Lei Zhang
- School of pharmacy, Anhui medical university, Hefei, Anhui Province 230032, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The innate immune response needs to be tightly regulated to balance elimination of microorganisms with the magnitude of inflammation. The rupture of this balance is crucial for the outcome of diseases such as rheumatoid arthritis (RA) in which an overflowed proinflammatory response is associated with self-damage. Epigenetics alludes to systems controlling gene expression and silencing independent of the germline, but stable enough to be inherited by daughter cells upon mitosis. We will show in this review how pathological processes in RA can be shaped by epigenetics, which may in turn explain differences in phenotypes between subgroups of patients and also between subsets of fibroblasts within the joint. On the whole, the concourse of epigenetic mechanisms can precipitate the aggressive behaviour of cells and the rupture of peripheral tolerance. Targeting these emerging regulatory pathways is a promising approach for RA therapeutics.
Collapse
|
38
|
A rat pharmacokinetic/pharmacodynamic model for assessment of lipopolysaccharide-induced tumor necrosis factor-alpha production. J Pharmacol Toxicol Methods 2007; 56:67-71. [PMID: 17391989 DOI: 10.1016/j.vascn.2007.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/30/1899] [Accepted: 01/14/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Tumor necrosis factor-alpha (TNFalpha) participates in many inflammatory processes. TNFalpha modulators show beneficial effects for the treatment of many diseases including rheumatoid arthritis. The purpose of this study was to validate a rat pharmacokinetic/pharmacodynamic (PK/PD) model for rapid assessment of drug candidates that intended to interrupt TNFalpha synthesis or release. METHODS Rats received intravenous (IV) or oral administrations of test article or dose vehicle, followed by LPS challenge. Plasma levels of test article and TNFalpha were determined. The areas under the concentration-time curves (AUC(drug) and AUC(TNFalpha)) were calculated. The overall percentage of inhibition on TNFalpha release in vivo was calculated by comparing AUC(TNFalpha) of the test article treated group against that for the vehicle control group. RESULTS The dosing vehicles tested in this study did not increase plasma TNFalpha level. At IV dose of up to 100 microg/kg, LPS did not alter the pharmacokinetics of the compound tested. Using a selective TNFalpha converting enzyme (TACE) inhibitor as model compound, this PK/PD model demonstrated its ability to correlate plasma test article concentration with its biological activity of lowering the LPS-induced TNFalpha plasma levels in vivo. DISCUSSION A rat PK/PD model for evaluation of the effect of drug candidates on LPS-induced TNFalpha synthesis and/or release has been investigated. This model provides integrated information on pharmacokinetics and in vivo potency of the test articles.
Collapse
|
39
|
Rhule A, Navarro S, Smith JR, Shepherd DM. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:121-8. [PMID: 16427227 DOI: 10.1016/j.jep.2005.12.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 11/26/2005] [Accepted: 12/15/2005] [Indexed: 05/06/2023]
Abstract
Herbals or dietary supplements are not regulated as drugs by the United States Food and Drug Administration (USFDA) although many may have associated therapeutic effects and toxicities. Therefore, the immunomodulatory effects of the herbal extract Panax notoginseng on cultured macrophages (RAW264.7 cells) were investigated to address potential therapeutic or toxic effects. Cells were stimulated with LPS (1 microg/ml) and treated with notoginseng at 5, 25 and 50 microg/ml. Notoginseng inhibited the LPS-induced production of TNF-alpha and IL-6 by the cultured macrophages in a concentration-dependent manner. The expression of COX-2 and IL-1 beta mRNA was also attenuated by notoginseng. TNF-alpha production was inhibited in samples treated with notoginseng 24h before, or at the same time as LPS stimulation, but not in samples treated 8h after LPS stimulation. Notoginseng reduced expression of the accessory molecules CD40 and CD86 on the RAW264.7 cells while CD14 and TLR4 expression remained unaffected. Furthermore, Rb1 and Rg1 ginsenosides also inhibited macrophage production of TNF-alpha, but to a lesser extent than did the whole notoginseng extract. Collectively, these results indicate that notoginseng inhibits LPS-induced activation of RAW264.7 macrophages and demonstrates that notoginseng possesses anti-inflammatory and immunosuppressive properties in vitro.
Collapse
Affiliation(s)
- Ava Rhule
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812-1552, USA
| | | | | | | |
Collapse
|
40
|
Havemose-Poulsen A, Sørensen LK, Stoltze K, Bendtzen K, Holmstrup P. Cytokine profiles in peripheral blood and whole blood cell cultures associated with aggressive periodontitis, juvenile idiopathic arthritis, and rheumatoid arthritis. J Periodontol 2006; 76:2276-85. [PMID: 16332240 DOI: 10.1902/jop.2005.76.12.2276] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cytokines play a key role in the pathogenesis of inflammatory diseases. An obvious question is whether patients with aggressive periodontitis, juvenile idiopathic arthritis, or rheumatoid arthritis share blood cytokine profiles distinguishing them from individuals free of disease. METHODS The study population consisted of Danish white adults, <35 years of age, diagnosed with localized aggressive periodontitis (LAgP; N = 18), generalized aggressive periodontitis (GAgP; N = 27), juvenile idiopathic arthritis (JIA; N = 10), or rheumatoid arthritis (RA; N = 23) and healthy individuals with no systemic or oral diseases (control [CTRL]; N = 25). Enzyme-linked immunosorbent assays were used to determine the levels of interleukin (IL)-1alpha, IL-1beta, IL-1 receptor antagonist (IL-1Ra), IL-6, IL-10, tumor necrosis factor (TNF)-alpha, and lymphotoxin (LT)-alpha in peripheral blood (plasma) and unstimulated and stimulated whole blood cell cultures from the same blood collection. Autoantibodies (aAb) to IL-1alpha and IL-6 were quantitated by radioimmunoassay. RESULTS Similar patterns of slightly higher IL-10 levels in plasma were found for GAgP and RA patients and in unstimulated cultures for GAgP, RA, and JIA patients. Interestingly, unstimulated cultures also demonstrated similar patterns of higher TNF-alpha levels for these three groups of patients. Similar group patterns of periodontitis patients (LAgP and GAgP) included increased IL-1Ra levels in stimulated cultures, which also showed similar group patterns of arthritis patients (JIA and RA) with respect to higher IL-1alpha and lower LT-alpha levels. Low titers of aAb to IL-1alpha and IL-6 were found in almost all individuals. CONCLUSION Patients with aggressive periodontitis and types of arthritis presented with similar components of blood cytokine profiles distinguishing them from individuals free of disease.
Collapse
Affiliation(s)
- Anne Havemose-Poulsen
- Department of Periodontology, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
41
|
Berhane BT, Zong C, Liem DA, Huang A, Le S, Edmondson RD, Jones RC, Qiao X, Whitelegge JP, Ping P, Vondriska TM. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase. Proteomics 2005; 5:3520-30. [PMID: 16052623 DOI: 10.1002/pmic.200401308] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis.
Collapse
Affiliation(s)
- Beniam T Berhane
- Department of Physiology and Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Inflammation plays a key role in atherothrombosis: in the development of plaques, plaque rupture and thrombus formation. Various biochemical substances have been shown to be involved in the inflammatory process, some with pro-inflammatory activity and others with anti-inflammatory activity. Increased expression of many inflammatory mediators (e.g. C-reactive protein, CD40 ligand, P-selectin and IL-6) has been shown to correlate with increased risk of atherothrombotic events. One possible strategy for primary and secondary prevention is likely to focus on minimizing the inflammatory response and tipping the balance in favour of anti-inflammatory mediators and, therefore, plaque stability.
Collapse
Affiliation(s)
- Alain Tedgui
- Department of Biology and Molecular Physiology of the Vessel, Inserm U541 - Hôpital Lariboisière, Paris, France.
| |
Collapse
|
43
|
Shibata Y, Ogura N, Yamashiro K, Takashiba S, Kondoh T, Miyazawa K, Matsui M, Abiko Y. Anti-inflammatory effect of linear polarized infrared irradiation on interleukin-1β-induced chemokine production in MH7A rheumatoid synovial cells. Lasers Med Sci 2005; 20:109-13. [PMID: 16047084 DOI: 10.1007/s10103-005-0350-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 05/10/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
We examined the anti-inflammatory effect of infrared linear polarized light irradiation on the MH7A rheumatoid fibroblast-like synoviocytes (FLS) stimulated with the proinflammatory cytokine interleukin (IL)-1beta. Expression of messenger ribonucleic acids (mRNAs) encoding IL-8, RANTES (regulated upon activation, normal T cell expressed and secreted), growth-related gene alpha (GROalpha), and macrophage inflammatory protein-1alpha (MIP1alpha) was measured using real-time reverse transcription polymerase chain reaction, and the secreted proteins were measured in the conditioned media using enzyme-linked immunosorbent assays. We found that irradiation with linear polarized infrared light suppressed IL-1beta-induced expression of IL-8 mRNA and, correspondingly, the synthesis and release of IL-8 protein in MH7A cells. This anti-inflammatory effect was equivalent to that obtained with the glucocorticoid dexamethasone. Likewise, irradiation suppressed the IL-1beta-induced expression of RANTES and GROalpha mRNA. These results suggest that the irradiation of the areas around the articular surfaces of joints affected by rheumatoid arthritis (RA) using linear polarized light may represent a useful new approach to treatment.
Collapse
Affiliation(s)
- Yasuko Shibata
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Inflammation represents a complex biologic and biochemical process involving cells of the immune system and a plethora of biologic mediators in response to mechanical, chemical or infectious injuries. When mobilization of effector cells and molecules becomes excessive, the beneficial aspect of this response--to limit damage and promote healing, can be overriden, resulting in host-cell and tissue dysfunction. Based on the hypothesis that chronic infections underly some inflammatory diseases, antibacterial therapy has long been assessed in various inflammatory settings. Recently, the anti-inflammatory activity of some antibacterial agents has also been suspected. Of these duel-action drugs, ansamycins represent an interesting family. Although their therapeutic use is restricted to potentially infectious inflammatory diseases, many experimental data suggest that these drugs also possess direct inhibitory activity on some crucial proinflammatory effectors. To date, the potent antimycobacterial activity of the therapeutically useful ansamycins precludes their widespread use in inflammatory diseases. However, biosynthetic manipulation remains an attractive route for the generation of pharmacologically useful analogs.
Collapse
Affiliation(s)
- Marie-Thérèse Labro
- INSERM, U479, CHU Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|